Read Junk DNA: A Journey Through the Dark Matter of the Genome Online
Authors: Nessa Carey
Scientists later realised that the telomeres in cells became shorter with each cell division. Every time one of the cells divided, all the DNA in that cell was copied. This ensured that both daughter cells inherited the same 46 chromosomes as the mother cell. But the system that copies the DNA in chromosomes can’t get right to the ends. So, over progressive cycles of cell division, the telomeres became shorter and shorter.
6
But this didn’t prove that the shortening of the telomeres actually caused cell senescence. It was perfectly possible that the effect on telomere length acted as a kind of marker for cell proliferation, but didn’t have any actual role to play in the changes in cell behaviour.
This is a really important concept in scientific enquiry. There are plenty of situations in which we can see a correlation between two things, but we shouldn’t from that automatically assume there is a causal relationship. Consider the following relationship. There is a strong relationship between developing lung cancer and sucking cough sweets. This doesn’t of course prove that sucking cough sweets gives you lung cancer. One of the first symptoms of lung cancer in many people is the development of a persistent cough, and someone with a cough is likely to try sucking hard sweets to decrease their discomfort.
The confirmation that telomere shortening did indeed lead to senescence came in the 1990s. Scientists demonstrated that if they increased the length of the telomeres in fibroblasts, the cells would bypass senescence and grow indefinitely.
7
It is now generally accepted that the telomeres act as a molecular clock, counting us down as we age. Not all the details have been established yet, because it’s a difficult area of biology to investigate, for a variety of reasons. One is that in any given cell, the 92 telomeric regions (one at each end of each chromosome) won’t be the same length. This makes it hard to come up with a meaningful measure of telomere length that is applicable throughout a cell, never mind an entire human being.
8
It’s also very difficult for scientists to use their favourite model animal – the mouse – to investigate the relationships between telomere biology and ageing. This is because rodents have extremely long telomeres, much lengthier than in humans. Rodents, of course, are much shorter-lived than humans, suggesting that telomere length is not the only arbiter of ageing, but the accumulated evidence suggests that in humans they are of major importance.
Looking after the shoelaces
What we do know is that our cells don’t succumb to the ageing process without a fight. They contain mechanisms to try to keep the telomeres long and intact as much as possible. This is achieved in our cells by something called telomerase activity. The telomerase system adds new TTAGGG motifs onto the ends of the chromosomes, basically restoring these important bits of junk DNA that are lost when the cells divide. Telomerase activity requires two components. One part is an enzyme, which adds the repeated sequences back on to the chromosome termini. The other is a piece of RNA, of a defined sequence, which acts as a template so that the enzyme adds the correct bases.
So the ends of our chromosomes rely heavily on junk DNA, genomic material that doesn’t code for proteins. The telomeres themselves are junk, and to maintain them the cell uses the output from a gene that produces RNA, but which is never used as a
template for a protein. This RNA itself is a functional molecule, carrying out a vital role.
e
9
But if our cells contain a mechanism for maintaining telomere length, through the activity of the telomerase system, why do the telomeres get progressively shorter? What’s wrong with the system, why doesn’t it work properly?
The reason probably stems from the fact that there are few systems in biology that work well if allowed to run unchecked. And telomerase activity is held in very tight check indeed in our cells. The pathological exception to this is in cancer cells. Cancer cells frequently have adapted in such a way that they express high levels of telomerase activity and have elongated telomeres. This contributes to the aggressive growth and proliferation of many tumours. Our cellular systems have probably reached an evolutionary compromise. The telomeres are maintained at sufficient levels that we live long enough to reproduce (anything after that is irrelevant in evolutionary terms). But they aren’t so long that we succumb to cancer too early.
The basic telomere length in an individual is set fairly early in development, at a time when there is an uncharacteristic spike in the telomerase activity.
10
Telomerase activity is also high in germ cells, the cells that give rise to eggs and sperm.
11
This is to ensure that our offspring inherit telomeres of a good length.
Many human tissues contain cells known as stem cells. These are responsible for producing replacement cells when needed. When new cells are needed, a stem cell will copy its DNA and then split it between two daughter cells. Typically, one of these daughter cells will develop into a fully fledged replacement cell. The other will become a new stem cell, which can continue to create replacements in the same way.
One of the ‘busiest’ cell types in the human body is the type of stem cell that gives rise to all the blood cells,
f
including red blood cells and those that we rely on to fight infection. These stem cells proliferate at an incredible rate. This is because we constantly need to replenish the immune cells that fight off the foreign pathogens we encounter every day of our lives. We also need to replace red blood cells, because these only survive for about four months. Incredibly, the human body produces about 2 million red blood cells every second.
12
That requires an awfully active stem cell population, in a pretty much constant state of cell division. These stem cells are enriched for telomerase activity, but eventually even they suffer from telomeres that are too short to do their job properly.
13
,
14
This is one reason why the elderly are at greater risk of infection than younger adults. They are essentially running out of immune cells. It’s also one of the reasons why cancer rates rise with age. Our immune system usually does a good job of destroying abnormal cells, but the effectiveness of this surveillance declines as stem cells die off.
Why is the length of our telomeres so important? It’s only junk DNA, so why should it matter if there are only several hundred copies of the non-coding TTAGGG, rather than a few thousand? Much of the problem seems to lie in the relationship between the DNA at the telomeres and the protein complexes that are deposited on this DNA. If the repetitive DNA shrinks below a critical level, the end of the chromosome can’t bind enough of the protective proteins. We’ve already seen one of the consequences of a lack of the relevant proteins in the mice that died before birth.
That was a very extreme example, but it’s undoubtedly the case that it’s vital that the telomeres are long enough to bind lots of the protective protein complexes. We know that this is true in humans as well as mice, because there are people who have
inherited mutations in certain key components of the systems for maintaining the telomeres. The effects witnessed aren’t as dramatic as in the genetically modified mice, but that’s because such severely affected foetuses will tend to be lost during pregnancy. But the mutations we know about lead to conditions associated with certain disorders that are normally age-related.
Telomeres and diseases
The disorders are predominantly caused by mutations in the telomerase gene, or in the gene that codes for the RNA template, or in genes that encode proteins that protect the telomeres, or help the telomerase system to work effectively.
g
Essentially, mutations in any of these genes can have similar effects. They basically make it harder for cells to maintain their telomeres. Consequently, the telomeres in patients with these mutations shorten more rapidly than in healthy individuals. This is why they develop symptoms that are suggestive of premature ageing. These disorders are known as human telomere syndromes.
15
Dyskeratosis congenita is a rare genetic condition, affecting about one in a million individuals. Patients suffer from a whole raft of problems. Their skin contains random dark patches. They develop white patches in their mouth, which can progress to oral cancer, and their fingernails and toenails are thin and weak. They suffer progressive and seemingly irreversible organ failure, triggered initially by bone marrow failure and lung problems. They are also at increased risk of cancer.
Scientists have realised that this condition can be caused by mutations in different genes in different affected families. At least eight mutated genes are known at the moment, and it’s quite possible that there are more.
16
The feature that all the genes have in
common is that they are involved in maintaining telomeres. This shows us that no matter how this region of junk DNA gets messed up, the final symptoms tend to be similar.
The lung problems are known as pulmonary fibrosis. Patients suffering from this condition have debilitating symptoms. They suffer shortness of breath and cough a lot, because they can’t move carbon dioxide out of their lungs efficiently or get oxygen into them easily. Looking at their lungs down a microscope, pathologists can see substantial regions where the normal tissue has been replaced by inflammation and fibrous tissue, rather like scar formation.
17
These clinical and pathological findings in the lungs are ones that are seen quite commonly in respiratory disease, and this prompted scientists to look at samples from patients with a condition known as idiopathic pulmonary fibrosis. Idiopathic just means that there is no obvious reason for the disease. Researchers tested these patients to see if any of them also had defects in the genes whose products protect the telomeres. In all, up to one in six people with a family history of this disease, but no previously identified mutations, were shown to have defects in the relevant genes.
18
,
19
Even in patients where there was no apparent family history of pulmonary fibrosis, mutations in telomere-relevant genes were found in between 1 and 3 per cent of cases.
20
,
21
There are about 100,000 patients with idiopathic pulmonary fibrosis in the United States, so at a conservative estimate 15,000 of them probably have developed the disease because they cannot maintain their telomeres properly.
Defects in the mechanisms that protect telomeres can also cause a different disease. There’s a condition called aplastic anaemia, in which the bone marrow fails to produce enough blood cells.
22
It’s rare, affecting about one person in half a million. About one in twenty of the people with this condition have mutations in the telomerase enzyme or the accessory RNA template.
What may be happening in some of these patients is that they
have both bone marrow defects and lung defects, but one problem becomes clinically apparent before the other. This can lead to unexpected consequences when medically treated. Bone marrow transplants are one of the treatments used for patients with aplastic anaemia. The patients are given drugs to prevent their immune system from rejecting the new bone marrow. Some of these drugs are known to have toxic effects in the lungs. For most patients with aplastic anaemia, this isn’t really a problem. But for those patients who have defects in their telomerase system, these drugs can trigger lung fibrosis that may actually be lethal.
23
The cure becomes the cause of death.
There’s an odd genetic reason why clinicians may not realise that the symptoms they see in a patient are part of an inherited telomere problem. The telomerase complex is usually active in the germ cells, so that parents pass on long telomeres to their children. But in some of the families where there are mutations in the genes encoding the telomerase enzyme or the accessory RNA factor, this isn’t the case. As a consequence, each generation passes on shorter telomeres to its offspring. Because symptoms develop when the telomeres fall below a certain length, each successive generation is born rather nearer to the point where their telomere length falls over the cliff edge.
24
The effects of this are quite dramatic. A grandparent may have relatively long telomeres and develop pulmonary fibrosis in their 60s. Their child may have intermediate-length telomeres and develop lung symptoms in their 40s. But the third generation may inherit really short telomeres. They may develop aplastic anaemia in childhood.
Because the grandparental and parental generations’ conditions don’t develop until quite late in life, the grandchild may become sick before any of its elders have started displaying symptoms. This will make it difficult for a clinician to recognise that a genetic disease is present in the family, and this is compounded by the
different symptoms found in the most severely and least severely affected individuals.
This strange pattern, where the oldest generation has different and milder symptoms that develop later in life than those found in the youngest generation, is rather similar to the inheritance pattern we saw in Chapter 1 for myotonic dystrophy. This is a very unusual genetic phenomenon and it is striking that in the two most clear-cut examples of this, the effect is ultimately caused by a change in length of a stretch of junk DNA.