El universo elegante (60 page)

Read El universo elegante Online

Authors: Brian Greene

Tags: #Divulgación Científica

BOOK: El universo elegante
2.16Mb size Format: txt, pdf, ePub
Una característica sorprendente de la teoría M: la democracia en extensión

Cuando la constante de acoplamiento de cuerdas es pequeña en cualquiera de las cinco zonas peninsulares superiores del esquema teórico que vemos en la Figura 12.11, el ingrediente fundamental de la teoría resulta ser una cuerda unidimensional. Sin embargo, acabamos de conseguir un nuevo punto de vista sobre esta cuestión. Si partimos de las zonas Heterótica-E o del Tipo IIA y aumentamos el valor de las respectivas constantes de acoplamiento de cuerdas, nos desplazamos hacia el centro del esquema de la Figura 12.11 y, las que parecían ser cuerdas unidimensionales se estiran convirtiéndose en membranas bidimensionales. Además, a través de una sucesión más o menos intrincada de relaciones de dualidad que involucran a las constantes de acoplamiento de cuerdas y a la forma concreta de las dimensiones espaciales arrolladas, podemos movernos de una manera continua y sin baches desde un punto a otro cualquiera dentro de la Figura 12.11. Dado que las membranas bidimensionales que hemos descubierto desde las perspectivas de la teoría Heterótica-E y la teoría del Tipo IIA se pueden recorrer a medida que nos desplazamos hacia cualquiera de las otras tres teorías de cuerdas de la Figura 12.11, averiguamos así que cada una de las cinco teorías de cuerdas incluye también membranas bidimensionales.

Esto nos plantea dos preguntas. En primer lugar, ¿son las membranas bidimensionales el auténtico ingrediente fundamental de la teoría de cuerdas? Y la segunda pregunta, teniendo en cuenta que en la década de 1970 y principios de la de 1980 se hizo el gran salto de las partículas puntuales de dimensión cero a las cuerdas unidimensionales, y después de haber visto que actualmente la teoría de cuerdas incluye membranas bidimensionales, ¿podría ser que en la teoría haya también ingredientes de dimensiones aún más elevadas? En el momento de escribir esto, las respuestas a estas preguntas todavía no se conocen del todo, pero la situación parece ser como explicamos a continuación.

Teníamos grandes esperanzas puestas en la supersimetría para conseguir algún conocimiento relativo a cada una de las formulaciones de la teoría de cuerdas más allá del dominio de validez de los métodos de aproximación perturbativos. En particular, las propiedades de los estados BPS, sus masas y sus cargas de fuerza, se determinan únicamente mediante la supersimetría, y esto nos permite entender algunas de sus características relativas al acoplamiento fuerte sin tener que efectuar cálculos directos de una dificultad inimaginable. De hecho, gracias a los esfuerzos iniciales de Horowitz y Strominger, y a los subsiguientes trabajos innovadores de Polchinski, actualmente sabemos más acerca de esos estados BPS. Concretamente, no sólo conocemos las masas y las cargas de fuerza que transportan, sino que también comprendemos claramente el
aspecto
que tienen. Además, esta imagen es quizá el más sorprendente de todos los descubrimientos. Algunos de los estados BPS son cuerdas unidimensionales. Otros son membranas bidimensionales. Por ahora, estas formas resultan familiares. Pero, la sorpresa es que hay otras más que son tridimensionales, o de cuatro dimensiones; de hecho, la gama de las posibilidades abarca todas las dimensiones espaciales hasta
nueve
inclusive. La teoría de cuerdas, o la Teoría-M, o como quiera que por fin se llame, contiene en realidad objetos extendidos de toda una amplia gama de dimensiones espaciales. Los físicos han acuñado el término «tribrana» para designar objetos de tres dimensiones espaciales, «tetrabrana» para los de cuatro dimensiones espaciales, y así sucesivamente hasta las «nonabranas» o membranas de nueve dimensiones (y, más en general, para un objeto de
p
dimensiones espaciales, siendo
p
un número entero, los físicos han acuñado una expresión tan poco eufónica como
pi-brana
). A veces, utilizando esta terminología, las cuerdas se denominan unibranas y a las membranas se les llama bi-branas. El hecho de que todos estos objetos extendidos sean realmente parte de la teoría impulsó a Paul Townsend a declararla «democracia de las branas».

A pesar de esta democracia de las branas, las cuerdas —objetos extendidos unidimensionales— son un caso especial por las siguientes razones. Los físicos han demostrado que la masa de los objetos extendidos de cualquier dimensión, salvo la de las cuerdas unidimensionales, es
inversamente
proporcional al valor de la constante de acoplamiento asociada cuando estamos en cualquiera de las cinco regiones de la teoría de cuerdas de la Figura 12.11. Esto significa que con un acoplamiento débil de cuerdas, en cualquiera de las cinco formulaciones, todo tendrá una masa enorme salvo las cuerdas —órdenes de magnitud mayores que la masa de Planck—. Debido a que son tan pesadas y dado que, a partir de la ecuación
E
= mc
2
,
requieren
una energía increíblemente alta para ser producidas, las branas sólo ejercen un pequeño efecto en muchas de las propiedades físicas, pero no en todas, como veremos en el próximo capítulo. Sin embargo, cuando nos aventuramos fuera de las regiones peninsulares de la Figura 12.11, las branas de dimensiones superiores se vuelven más ligeras y por lo tanto resultan cada vez más numerosas.
[110]

Por consiguiente, la imagen que hemos de retener es la siguiente. En la región central de la Figura 12.11, tenemos una teoría cuyos ingredientes fundamentales no son precisamente cuerdas o membranas, sino «branas» de una variedad de dimensiones, todas ellas más o menos en condiciones de igualdad. Actualmente, no tenemos un dominio firme sobre muchas características esenciales de esta teoría completa. Pero algo que sí sabemos es que cuando nos desplazamos de la región central hacia cualquiera de las zonas peninsulares, sólo las cuerdas (o las membranas arrolladas cuyo aspecto es cada vez más el de las cuerdas, como en las Figuras 12.7 y 12.8) son lo suficientemente ligeras como para entrar en contacto con la física tal como la conocemos —las partículas de la Tabla 1.1 y las cuatro fuerzas mediante las cuales interaccionan—. Los análisis perturbativos que los especialistas en cuerdas han utilizado durante cerca de dos décadas no se han refinado lo suficiente para descubrir ni siquiera la existencia de los objetos extendidos de enorme masa que se podrían encontrar en otras dimensiones; las cuerdas dominaban los análisis y a la teoría se le dio el poco democrático nombre de teoría de cuerdas. Una vez más, en esas regiones de la Figura 12.11 estamos habilitados, por la mayor parte de las consideraciones, para ignorar todo salvo las cuerdas. En esencia, es lo que hemos hecho hasta ahora en este libro. Sin embargo, ahora vemos que en realidad la teoría es más rica que cualquier otra que se haya imaginado anteriormente.

¿Puede algo de esto responder las preguntas sin respuesta de la teoría de cuerdas?

Sí Y no. Hemos conseguido profundizar en nuestro conocimiento liberándonos de ciertas conclusiones que, en retrospectiva, más que auténtica física de cuerdas eran consecuencia de análisis perturbativos aproximados. Sin embargo, el alcance que tienen actualmente nuestros instrumentos no perturbativos es muy limitado. El descubrimiento de la notable red de relaciones de dualidad nos permite lograr una visión mucho más amplia de la teoría de cuerdas, pero quedan sin resolver muchas cuestiones. En este momento, por ejemplo, no sabemos cómo ir más allá de las ecuaciones aproximadas para el cálculo del valor de la constante de acoplamiento de cuerdas —unas ecuaciones que, como ya hemos visto, son demasiado burdas para damos una información realmente útil—. Tampoco tenemos una idea clara de por qué existen exactamente tres dimensiones espaciales extendidas, o de cómo elegir la forma precisa para las dimensiones arrolladas. Estas cuestiones requieren unos métodos no perturbativos más agudamente perfilados que aquellos de los que disponemos en la actualidad.

Lo que tenemos es una comprensión mucho más profunda de la estructura lógica y del alcance teórico de la teoría de cuerdas. Con anterioridad a los descubrimientos reflejados resumidamente en la Figura 12.11, el comportamiento relativo al acoplamiento fuerte en cada teoría de cuerdas era una caja negra, un completo misterio. Como en los antiguos mapas, el dominio del acoplamiento fuerte era un territorio inexplorado, potencialmente lleno de dragones y monstruos marinos. Pero ahora vemos que, aunque el viaje al acoplamiento fuerte nos puede llevar a atravesar regiones desconocidas de la Teoría-M, finalmente nos hace recalar en el cómodo ámbito del acoplamiento débil —aunque sea en el lenguaje dual de lo que en otro tiempo se consideró una teoría de cuerdas diferente—.

La dualidad y la Teoría-M unifican las cinco teorías de cuerdas y sugieren una conclusión importante. Es muy posible que no nos esperen otras sorpresas del calibre de las que acabamos de explicar. Una vez que el cartógrafo puede rellenar cada región del globo terráqueo, el mapa está hecho y los conocimientos geográficos están completos. Esto no quiere decir que las exploraciones de la Antártida o de alguna isla perdida de Micronesia no tengan un mérito cultural o científico. Tan sólo significa que la época de los grandes descubrimientos geográficos ha pasado. La ausencia de espacios en blanco en el globo terráqueo lo confirma. El «mapa de las teorías» que aparece en la Figura 12.11 es algo similar para los especialistas en teoría de cuerdas. Este mapa cubre toda la gama de teorías que se pueden conseguir partiendo de cualquiera de las cinco estructuras de cuerdas. Aunque estamos lejos de tener un conocimiento completo de la tierra desconocida en que se encuentra la Teoría-M, no existen zonas del mapa que estén en blanco. Al igual que el cartógrafo, el especialista en teoría de cuerdas puede ahora afirmar con un cauteloso optimismo que el espectro de teorías lógicamente coherentes en el que figuran todos los descubrimientos esenciales del siglo pasado —la relatividad especial y la general; la mecánica cuántica; las teorías gauge de las fuerzas nuclear fuerte, nuclear débil y electromagnética; la supersimetría; las dimensiones adicionales de Kaluza y Klein— está completamente dibujado en la Figura 12.11.

El desafío que se les plantea a los especialistas en teoría de cuerdas —o quizá deberíamos decir a los especialistas en la Teoría-M— es demostrar que algún punto del mapa teórico de la Figura 12.11 describe realmente nuestro universo. Para llegar a hacer esto, es preciso hallar las ecuaciones completas y exactas cuya solución determinará ese punto escurridizo del mapa, y después comprender las propiedades físicas correspondientes con la precisión suficiente para permitimos realizar comparaciones con los resultados experimentales. Como Witten ha dicho: «El hecho de comprender qué es realmente la Teoría-M —las propiedades físicas que abarca— transformaría nuestro modo de comprender la naturaleza por lo menos tan radicalmente como lo hizo cualquiera de las revoluciones científicas importantes del pasado».
[111]
Éste es el programa para llegar a la unificación en el siglo XXI.

Capítulo
13
Agujeros Negros: Una perspectiva desde la teoría de cuerdas/Teoría-M

E
l conflicto entre la relatividad general y la mecánica cuántica que se desató con anterioridad a la teoría de cuerdas fue una afrenta para nuestra idea visceral de que las leyes de la naturaleza han de encajar todas juntas en un todo coherente y homogéneo. Pero este antagonismo era algo más que una disyunción abstracta de alto nivel. Las condiciones físicas extremas que existieron en el momento del
big bang
y que se dan dentro de los agujeros negros
no pueden
entenderse sin una formulación de la fuerza gravitatoria en el marco de la mecánica cuántica. Gracias al descubrimiento de la teoría de cuerdas, tenemos ahora la esperanza de llegar a resolver estos profundos misterios. En este y en el próximo capítulo, explicamos hasta dónde han llegado los especialistas en teoría de cuerdas en su afán de comprender los agujeros negros y el origen del universo.

Agujeros negros y partículas elementales

A primera vista es difícil imaginarse dos cosas más radicalmente diferentes que los agujeros negros y las partículas elementales. Habitualmente describimos los agujeros negros como los cuerpos celestes más enormes y voraces, mientras que las partículas elementales son las pizcas de materia más diminutas que existen. Sin embargo, las investigaciones de unos cuantos físicos a finales de la década de 1960 y principios de la de 1970, entre los que estaban Demetrios Christodoulou, Werner Israel, Richard Price, Brandon Carter, Roy Kerr, David Robinson, Hawking y Penrose, demostraron que los agujeros negros y las partículas elementales no son quizá tan diferentes como se podría pensar. Estos físicos encontraron pruebas cada vez más convincentes de lo que John Wheeler ha resumido en la frase «los agujeros negros no tienen pelaje». Con esto, Wheeler quería decir que, excepto por unas pocas características que los distinguen, todos los agujeros negros resultan parecidos. ¿Cuáles son esas características que los distinguen? Una de ellas, por supuesto, es la masa del agujero negro. ¿Cuáles son las demás? La investigación ha revelado que son la carga eléctrica y otras cargas de fuerza que un agujero negro puede transportar, así como la velocidad a la que gira. Y esto es todo. Cualquier par de agujeros negros que tengan la misma masa, las mismas cargas de fuerza y la misma velocidad de giro son completamente idénticos. Los agujeros negros no tienen «peinados» caprichosos —es decir, otras características intrínsecas— que los distingan uno del otro. Esto es un toque de atención. Recordemos que tales propiedades —masa, cargas de fuerza y espín— distinguen una partícula elemental de las otras. La similitud de los rasgos definitorios ha inducido a algunos físicos a lo largo de los años a la extraña especulación según la cual los agujeros negros podrían ser en realidad partículas elementales gigantescas.

De hecho, de acuerdo con la teoría de Einstein, no existe una masa mínima para los agujeros negros. Si comprimimos un pedazo de materia de cualquier masa hasta un tamaño suficientemente pequeño, una aplicación directa de la relatividad general nos muestra que se convertirá en un agujero negro. (Cuanto más ligera sea la masa, menor será el tamaño al que tenemos que comprimirla). Por lo tanto, podemos imaginarnos un experimento ficticio en el que comenzamos por tomar unas pizcas de materia cada vez más ligeras, las comprimimos hasta convertirlas en agujeros negros cada vez más pequeños, y comparamos las propiedades de esos agujeros negros resultantes con las propiedades de las partículas elementales. La aseveración de Witten sobre la carencia de pelaje nos lleva a la conclusión de que, para masas suficientemente pequeñas, los agujeros negros que formamos de esta manera se parecerán mucho a unas partículas elementales. Tendrán el aspecto de bultos diminutos que se caracterizan exclusivamente por su masa, sus cargas de fuerza y su espín.

Other books

Mated with the Cyborg by Cara Bristol
Pathway to Tomorrow by Claydon, Sheila
Love in the Time of Scandal by Caroline Linden
Personal Assistant by Cara North
Mockingbird's Call by Diane T. Ashley
The After Wife by Gigi Levangie Grazer
Waiting for Him by Natalie Dae
Moth to the Flame by Sara Craven
I Am Titanium (Pax Black Book 1) by John Patrick Kennedy