El universo elegante (63 page)

Read El universo elegante Online

Authors: Brian Greene

Tags: #Divulgación Científica

BOOK: El universo elegante
8.52Mb size Format: txt, pdf, ePub

Para combinar las observaciones de los dos párrafos anteriores, imaginemos una secuencia de instantáneas de un espacio de Calabi-Yau en el que el tamaño de una esfera tridimensional concreta se hace cada vez más pequeño. La primera observación implica que una tribrana que envuelve a esta esfera tridimensional —que se nos presenta como un agujero negro— tendrá una masa cada vez más pequeña hasta que, en el punto final del colapso, será una tribrana sin masa. Pero, volviendo a la pregunta anterior, ¿qué significa esto? Vemos clara la respuesta apelando a la segunda observación. Nuestro trabajo demostraba que el nuevo patrón de vibración de cuerdas, carente de masa, que surgía de la transición de plegado cónico con rasgado del espacio, es
la descripción microscópica de la partícula carente de masa en que se ha convertido el agujero negro
. Llegamos a la conclusión de que, cuando una forma de Calabi-Yau experimenta una transición de plegado cónico con rasgado del espacio, hay un agujero negro, inicialmente provisto de masa, que se vuelve cada vez más ligero hasta que se queda sin masa y entonces se transmuta en una partícula sin masa —tal como un fotón sin masa— que en la teoría de cuerdas no es sino una cuerda única que ejecuta un patrón vibratorio particular. De este modo, por primera vez, la teoría de cuerdas establece explícitamente una relación directa, concreta y cuantitativamente inatacable, entre los agujeros negros y las partículas elementales.

«Derritiendo» agujeros negros

La relación entre agujeros negros y partículas elementales que encontramos se parece mucho a algo que todos estamos acostumbrados a percibir en la vida cotidiana y que técnicamente se conoce como transición de fase. Un ejemplo sencillo de transición de fase es una que ya mencionamos en el capítulo anterior: el agua puede existir como sólido (hielo), como líquido (agua líquida), y como gas (vapor). Son lo que llamamos las
fases
del agua, y la transformación de una a otra se denomina
transición de fase
. Morrison, Strominger y yo demostramos que existe una estrecha analogía matemática y física entre estas transiciones de fase y las transiciones de plegado cónico con rasgado del espacio que hacen que una forma de Calabi-Yau se convierta en otra. Una vez más, del mismo modo que una persona que nunca antes ha visto hielo o agua líquida no reconoce inmediatamente que se trata de dos fases de la misma sustancia subyacente, los físicos no se habían dado cuenta anteriormente de que los tipos de agujeros negros que estábamos estudiando y las partículas elementales eran en realidad dos fases del mismo material de cuerdas. Mientras que es la temperatura exterior la que determina la fase en la cual se encuentra el agua, la forma topológica de las dimensiones adicionales de Calabi-Yau determina si ciertas configuraciones físicas de la teoría de cuerdas se presentan como agujeros negros o como partículas elementales. Es decir, en la primera fase, la forma inicial de Calabi-Yau (el equivalente en la analogía a la fase del hielo, por ejemplo), nos encontramos con que están presentes ciertos agujeros negros. En la segunda fase, la segunda forma de Calabi-Yau (el equivalente en la analogía a la fase líquida del agua), estos agujeros negros han sufrido una transición de fase —se han «derretido», por decirlo así— convirtiéndose en patrones de cuerdas vibratorios fundamentales. El rasgado del espacio durante las transiciones de plegado cónico nos lleva de una fase de Calabi-Yau a otra. En este proceso, vemos que los agujeros negros y las partículas elementales, como el hielo y el agua, son dos caras de la misma moneda. Constatamos así que los agujeros negros encajan cómodamente en el marco de la teoría de cuerdas.

Hemos utilizado a propósito la misma analogía del agua para estas transmutaciones drásticas con rasgado del espacio y para las transmutaciones de una de las cinco formulaciones de la teoría de cuerdas en otra (capítulo 12) porque están estrechamente relacionadas. Recordemos que mediante la Figura 12.11 habíamos expresado que las cinco teorías son duales la una con respecto a la otra y, por lo tanto, están unificadas bajo la rúbrica de una única teoría que abarca todo. Pero ¿persiste la posibilidad de movernos continuamente de una descripción a otra —partir de cualquier punto del mapa de la Figura 12.11 y llegar a cualquier otro— incluso después de dejar que las dimensiones adicionales se enrollen dentro de una u otra forma de Calabi-Yau? Antes del descubrimiento de esos resultados drásticos derivados de los cambios de topología, la respuesta era no, ya que no se conocía ningún modo de deformar de manera continua una forma de Calabi-Yau hasta convertirla en otra. Sin embargo, ahora vemos que la respuesta es sí: mediante estas transiciones, físicamente coherentes, de plegado cónico con rasgado del espacio, podemos modificar de manera continua cualquier espacio de Calabi-Yau hasta convertirlo en otro. Si hacemos variar las constantes de acoplamiento y la geometría de dimensiones arrolladas de Calabi-Yau, vemos que todas las construcciones teóricas relativas a cuerdas son, una vez más, fases diferentes de una única teoría. Incluso después de realizar el arrollado de todas las dimensiones adicionales, la unidad de la Figura 12.11 se mantiene firmemente.

Entropía de los agujeros negros

Durante muchos años, algunos de los físicos teóricos más competentes estuvieron especulando sobre la posibilidad de que existieran los procesos con rasgado del espacio y también una relación entre los agujeros negros y las partículas elementales. Aunque estas especulaciones podían sonar al principio a ciencia ficción, el descubrimiento de la teoría de cuerdas, con su capacidad para fusionar la relatividad general y la mecánica cuántica, nos ha permitido ahora situar firmemente esas posibilidades en el puesto más avanzado de la ciencia de vanguardia. Este éxito nos anima a preguntar si alguna de esas otras propiedades misteriosas de nuestro universo, que se han resistido pertinazmente a ser resueltas durante décadas, podrían ahora sucumbir también ante los poderes de la teoría de cuerdas. Ante todo, entre esas propiedades está el concepto de
entropía de los agujeros negros
. Éste es el campo en el que la teoría de cuerdas ha hecho mayores alardes de poder, resolviendo con éxito un problema de enorme importancia planteado hace ya un cuarto de siglo.

La entropía es una medida del desorden o de la aleatoriedad. Por ejemplo, si la mesa de trabajo está llena de pisos y más pisos de libros abiertos, artículos a medio leer, periódicos viejos y folletos de propaganda, se puede decir que se encuentra en un estado de gran desorden o de
alta entropía
. Al contrario, si está perfectamente ordenada, con los artículos en carpetas ordenadas por orden alfabético, periódicos apilados en orden cronológico, libros ordenados alfabéticamente por autores, y bolígrafos y rotuladores colocados en sus botes correspondientes, la mesa se encuentra en un estado de mucho orden o, lo que es equivalente, de
baja entropía
. Este ejemplo ilustra la idea esencial, pero los físicos han formulado una definición perfectamente cuantitativa de la entropía que permite especificar la entropía de un objeto utilizando un valor numérico determinado: cuanto mayor es ese número, mayor es la entropía; si el número es menor, significa una entropía menor. Aunque los detalles son un poco complicados, este número, dicho de una forma sencilla, indica los posibles reordenamientos de los componentes de un sistema físico, dado que dejan su apariencia general intacta. Cuando la mesa de trabajo está limpia y ordenada, prácticamente cualquier reordenamiento que hagamos —cambiar el orden de los periódicos, libros o artículos, sacar algún bolígrafo de su bote— perturbará su altamente ordenada organización. Esto quiere decir que la mesa tiene una baja entropía. Por el contrario, si la mesa está hecha un desastre, el realizar numerosos cambios en la organización de los periódicos, los artículos y los folletos de propaganda dejaría casi siempre el mismo o parecido desorden y, por lo tanto, no perturbaría su aspecto general. Esto quiere decir que tiene una alta entropía.

Por supuesto que una explicación basada en reordenamientos de libros, artículos y periódicos en la superficie de una mesa —y determinar qué remodelaciones «dejan el aspecto general intacto»— carece de precisión científica. La definición rigurosa de entropía implica en realidad hacer el recuento o el cálculo del número de posibles reordenamientos de las microscópicas propiedades mecánico-cuánticas que tienen los componentes elementales de un sistema físico y que no afectan a sus grandes propiedades macroscópicas (tales como su energía o su presión). Los detalles no son esenciales, siempre y cuando nos demos cuenta de que la entropía es un concepto mecánico— cuántico totalmente cuantitativo que mide con precisión el desorden general de un sistema físico.

En 1970, Jacob Bekenstein, que entonces era un estudiante graduado, alumno de John Wheeler en Princeton, planteó una audaz sugerencia. Se trataba de la extraordinaria idea de que los agujeros negros podrían tener entropía, y además en gran cantidad. A Bekenstein le había motivado la venerable y bien comprobada
segunda ley de la termodinámica
, que afirma que la entropía de un sistema siempre aumenta: todo tiende a un desorden mayor. Aunque se ordene esa mesa de trabajo tan desordenada, disminuyendo así su entropía, en realidad la entropía total, incluida la de nuestros cuerpos y la del aire que hay en la habitación, aumenta. Para ordenar la mesa se ha de gastar energía; el que la ordena ha de desorganizar algunas de las ordenadas moléculas de grasa de su cuerpo para generar la energía que utilizarán los músculos y, mientras se ordena, el cuerpo emite calor, el cual hace que las moléculas del aire que hay en el ambiente pasen a un estado de mayor agitación y desorden. Cuando se tienen en cuenta todos estos efectos, resulta que compensan con creces la disminución de entropía de la mesa, y por consiguiente la entropía total aumenta.

Pero Bekenstein se preguntaba: ¿qué sucede si se ordena la mesa cerca del horizonte de sucesos de un agujero negro y se instala una bomba de vacío para que absorba todas las moléculas de aire que han empezado a agitarse en la habitación y las envíe a las desconocidas profundidades del interior del agujero negro? Podemos ser incluso más exagerados: ¿qué pasaría si la bomba de vacío absorbe todo el aire, y todo lo que hay en la mesa, e incluso la propia mesa, enviándolo al agujero negro, y dejando una fría habitación sin aire y perfectamente ordenada? Puesto que la entropía de la habitación ciertamente ha disminuido, Bekenstein deducía que el único modo de cumplir la segunda ley de la termodinámica sería que el agujero negro tuviera entropía, y que esta entropía aumentara suficientemente cuando la materia se bombea al interior del agujero, con el fin de compensar la pérdida de entropía observada en el exterior del agujero negro.

De hecho, Bekenstein pudo recurrir a un famoso descubrimiento de Stephen Hawking para respaldar su propuesta. Hawking había demostrado que el área del horizonte de sucesos de un agujero negro —recuérdese que este horizonte es la superficie de no retorno que envuelve a cualquier agujero negro— siempre aumenta cuando se produce cualquier interacción física. Hawking demostró que, si un asteroide cae en un agujero negro o si parte del gas de la superficie de una estrella cercana se une al agujero negro, o si dos agujeros negros chocan y se combinan entre sí, en todos estos procesos y también en todos los demás, el área total del horizonte de sucesos del agujero negro siempre aumenta. Para Bekenstein, la evolución inexorable hacia una mayor entropía total induce a pensar en una relación con la inexorable evolución a una entropía total mayor que se menciona en la segunda ley de la termodinámica. Formuló la hipótesis de que el área del horizonte de sucesos de un agujero negro proporciona una medida exacta de su entropía.

Sin embargo, examinando todo esto más detenidamente, hay dos razones por las que la mayoría de los físicos pensaron que la idea de Bekenstein podía no ser correcta. En primer lugar, los agujeros negros parecen estar entre los objetos más ordenados y organizados de todo el universo. Una vez que se mide la masa de un agujero negro, las cargas de fuerza que transporta y su espín, la identidad de dicho agujero negro queda determinada con toda precisión. Con unas características definitorias tan escasas, parece como si a un agujero negro le faltara la estructura suficiente para que pudiera haber desorden en él. Del mismo modo que parecen pocos los estragos que se podrían causar en una mesa de trabajo sobre la que hubiera tan sólo un libro y un lápiz, los agujeros negros parecen demasiado sencillos como para poder tener desorden. La segunda razón por la que la propuesta de Bekenstein era difícil de aceptar, era que la entropía, como ya hemos comentado aquí, es un concepto del marco de la mecánica cuántica, mientras que los agujeros negros, hasta hace poco, estaban firmemente atrincherados en el campo contrario, es decir, en la relatividad general. A principios de la década de 1970, sin que hubiera ningún modo de fusionar la relatividad general y la mecánica cuántica, parecía cuanto menos inapropiado discutir la posible entropía de los agujeros negros.

¿Cómo de negro es lo negro?

Parece ser que también Hawking había pensado en la analogía entre su ley del aumento de la superficie exterior de un agujero negro y la ley del inevitable aumento de la entropía, pero descartó esta analogía pensando que era sólo una coincidencia. Hawking, basándose en su ley del incremento del área y en otros descubrimientos realizados junto con James Bardeen y Brandon Carter, afirmó que, después de todo, si uno se tomaba en serio la analogía entre las leyes de los agujeros negros y las leyes de la termodinámica, estaría obligado no sólo a identificar el área del horizonte de sucesos del agujero negro con su entropía, sino también a asignar una
temperatura
al agujero negro (con un valor exacto determinado por la fuerza del campo gravitatorio del agujero negro en su horizonte de sucesos). Pero, si un agujero negro tiene una temperatura distinta de cero —independientemente de lo baja que pueda ser— los principios físicos más básicos y sólidamente establecidos
exigirían
que el agujero emitiera una radiación, como lo hace un atizador de hierro incandescente. Sin embargo, los agujeros negros, como todo el mundo sabe, son negros; se supone que no emiten nada. Hawking y casi todos los demás coincidían en que esto descartaba definitivamente la sugerencia de Bekenstein. Por otro lado, Hawking estaba dispuesto a aceptar que, si un pedazo de materia que posee entropía se arroja al interior de un agujero negro, esta entropía se pierde, lisa y llanamente. Lo sentimos por la segunda ley de la termodinámica.

Other books

Heartbreak Cake by Cindy Arora
Hell's Belle by Biondine, Shannah
A Family Holiday by Bella Osborne
In the Dead of Summer by Gillian Roberts
Evil Eyes by Corey Mitchell
Whiskey and Water by Elizabeth Bear
The Bar Code Rebellion by Suzanne Weyn