The Blind Watchmaker (27 page)

Read The Blind Watchmaker Online

Authors: Richard Dawkins

Tags: #Science, #Life Sciences, #Evolution, #General

BOOK: The Blind Watchmaker
13.27Mb size Format: txt, pdf, ePub

What might ‘power’ mean to a clay? What incidental properties of the clay could influence the likelihood that it, the same variety of clay, would be propagated around the countryside? Clays are made from chemical building blocks such as silicic acid and metal ions, which are in solution in rivers and streams having been dissolved - ‘weathered’ out of rocks further upstream. If conditions are right they crystallize out of solution again downstream, forming clays. (Actually the ‘stream’, in this case, is more likely to mean the seeping and trickling of the groundwater than a rushing open river. But, for simplicity, I shall continue to use the general word stream.) Whether or not a particular type of clay crystal is allowed to build up depends, among other things, upon the rate and pattern of flow of the stream. But deposits of clay can also
influence
the flow of the stream. They do this inadvertently by changing the level, shape and texture of the ground through which the water is flowing. Consider a variant of clay that just happens to have the property of reshaping the structure of the soil so that the flow Speeds up. The consequence is that the clay concerned gets washed away again. This kind of clay, by definition, is not very ‘successful’. Another unsuccessful clay would be one that changed the flow in such a way that a rival variant of clay was favoured.

We aren’t, of course, suggesting that clays ‘want’ to go on existing. Always we are talking only about incidental consequences, events which follow from properties that the replicator just happens to have. Consider yet another variant of clay. This one happens to slow down the flow in such a way that future deposition of its
own
kind of clay is enhanced. Obviously this second variant will tend to become common, because it happens to manipulate streams to its own ‘advantage’. This will be a ‘successful’ variant of clay. But so far we are dealing only with single-step selection. Could a form of cumulative selection get going?

To speculate a little further, suppose that a variant of a clay improves its own chances of being deposited, by damming up streams. This is an inadvertent consequence of the peculiar defect structure of the clay. In any stream in which this kind of clay exists, large, stagnant shallow pools form above dams, and the main flow of water is diverted into a new course. In these still pools, more of the same kind of clay is laid down. A succession of such shallow pools proliferates along the length of any stream that happens to be ‘infected’ by seeding crystals of this kind of clay. Now, because the main flow of the stream is diverted, during the dry season the shallow pools tend to dry up. The clay dries and cracks in the sun, and the top layers are blown off as dust. Each dust particle inherits the characteristic defect structure of the parent clay that did the damming, the structure that gave it its damming properties. By analogy with the genetic information raining down on the canal from my willow tree, we could say that the dust carries ‘instructions’ for how to dam streams and eventually make more dust. The dust spreads far and wide in the wind, and there is a good chance that some particles of it will happen to land in another stream, hitherto not ‘infected’ with the seeds of this kind of dammaking clay. Once infected by the right sort of dust, a new stream starts to grow crystals of dammaking clay, and the whole depositing, damming, drying, eroding cycle begins again.

To call this a ‘life’ cycle would be to beg an important question, but it is a cycle of a sort, and it shares with true life cycles the ability to initiate cumulative selection. Because streams are infected by dust ‘seeds’ blown from other streams, we can arrange the streams in an order of ‘ancestry’ and ‘descent’. The clay that is damming up pools in stream B arrived there in the form of dust crystals blown from stream A. Eventually, the pools of stream B will dry up and make dust, which will infect streams F and P. With respect to the source of their dammaking clay, we can arrange streams into ‘family trees’. Every infected stream has a ‘parent’ stream, and it may have more than one ‘daughter’ stream. Each stream is analogous to a body, whose ‘development’ is influenced by dust seed ‘genes’, a body that eventually spawns new dust seeds. Each ‘generation’ in the cycle starts when seed crystals break away from the parent stream in the form of dust. The crystalline structure of each particle of dust is copied from the clay in the parent stream. It passes on that crystalline structure to the daughter stream, where it grows and multiplies and finally sends ‘seeds’ out again.

The ancestral crystal structure is preserved down the generations unless there is an occasional mistake in crystal growth, an occasional alteration in the pattern of laying down of atoms. Subsequent layers of the same crystal will copy the same flaw, and if the crystal breaks in two it will give rise to a subpopulation of altered crystals. Now if the alteration makes the crystal either less or more efficient in the damming
drying
erosion cycle, this will affect how many copies it has in subsequent ‘generations’. Altered crystals might, for instance, be more likely to split (‘reproduce’). Clay formed from altered crystals might have greater damming power in any of a variety of detailed ways. It might crack more readily in a given amount of sun. It might crumble into dust more readily. The dust particles might be better at catching the wind, like fluff on a willow seed. Some crystal types might induce a shortening of the ‘life cycle’, consequently a speeding up of their ‘evolution’. There are many opportunities for successive ‘generations’ to become progressively ‘better’ at getting passed to subsequent generations. In other words, there are many opportunities for rudimentary cumulative selection to get going.

These little flights of fancy, embellishments of Cairns-Smith’s own, concern only one of several kinds of mineral ‘life cycle’ that could have started cumulative selection along its momentous road. There are others. Different varieties of crystals might earn their passage to new streams, not by crumbling into dust ‘seeds’, but by dissecting their streams into lots of little streamlets that spread around, eventually joining and infecting new river systems. Some varieties might engineer waterfalls that wear down the rocks faster, and hence speed into solution the raw materials needed to make new clays further downstream. Some varieties of crystal might better themselves by making conditions hard for ‘rival’ varieties that compete for raw materials. Some varieties might become ‘predatory’, breaking up rival varieties and using their elements as raw materials. Keep holding in mind that there is no suggestion of ‘deliberate’ engineering, either here or in modern, DNAbased life. It is just that the world automatically tends to become full of those varieties of clay (or DNA) that
happen to
have properties that make them persist and spread themselves about.

Now to move on to the next stage of the argument. Some lineages of crystals might happen to catalyse the synthesis of new substances that assist in their passage down the ‘generations’. These secondary substances would not (not at first, anyway) have had their own lineages of ancestry and descent, but would have been manufactured anew by each generation of primary replicators. They could be seen as tools of the replicating crystal lineages, the beginnings of primitive ‘phenotypes’. Cairns-Smith believes that
organic
molecules were prominent among non-replicating ‘tools’ of his inorganic crystalline replicators. Organic molecules frequently are used in the commercial inorganic chemical industry because of their effects on the flow of fluids, and on the break-up or growth of inorganic particles: just the sorts of effects, in short, that could have influenced the ‘success’ of lineages of replicating crystals. For instance, a clay mineral with the lovely name montmorillonite tends to break up in the presence of small amounts of an organic molecule with the less-lovely name carboxymethyl cellulose. Smaller quantities of carboxymethyl cellulose, on the other hand, have just the opposite effect, helping to stick montmorillonite particles together. Tannins, another kind of organic molecule, are used in the oil industry to make muds easier to drill. If oil-drillers can exploit organic molecules to manipulate the flow and drillability of mud, there is no reason why cumulative selection should not have led to the same kind of exploitation by selfreplicating minerals.

At this point Cairns-Smith’s theory gets a sort of free bonus of added plausibility. It so happens that other chemists, supporting more conventional organic ‘primeval soup’ theories, have long accepted that clay minerals would have been a help. To quote one of them (D.M.Anderson), ‘It is widely accepted that some, perhaps many, of the abiotic chemical reactions and processes leading to the origin on Earth of replicating micro-organisms occurred very early in the history of Earth in close proximity to the surfaces of clay minerals and other inorganic substrates.’ This writer goes on to list five ‘functions’ of clay minerals in assisting the origin of organic life, for instance ‘ Concentration of chemical reactants by adsorption’. We needn’t spell the five out here, or even understand them. From our point of view, what matters is that each of these five ‘functions’ of clay minerals can be twisted round the other way. It shows the close association that can exist between organic chemical synthesis and clay surfaces. It is therefore a bonus for the theory that clay replicators synthesized organic molecules and used them for their own purposes.

Cairns-Smith discusses, in more detail than I can accommodate here, early uses that his clay-crystal replicators might have had for proteins, sugars and, most important of all, nucleic acids like RNA. He suggests that RNA was first used for purely structural purposes, as oil drillers use tannins or we use soap and detergents. RNA-like molecules, because of their negatively charged backbones, would tend to coat the outsides of clay particles. This is getting us into realms of chemistry that are beyond our scope. For our purposes what matters is that RNA, or something like it, was around for a long time before it became selfreplicating. When it finally did become selfreplicating, this was a device evolved by the mineral crystal ‘genes’ to improve the efficiency of manufacture of the RNA (or similar molecule). But, once a new selfreplicating molecule had come into existence, a new kind of cumulative selection could get going. Originally a side-show, the new replicators turned out to be so much more efficient than the original crystals that they took over. They evolved further, and eventually perfected the DNA code that we know today. The original mineral replicators were cast aside like worn-out scaffolding, and all modern life evolved from a relatively recent common ancestor, with a single, uniform genetic system and a largely uniform biochemistry.

In
The Selfish Gene
I speculated that we may now be on the threshold of a new kind of genetic takeover. DNA replicators built ‘survival machines’ for themselves - the bodies of living organisms including ourselves. As part of their equipment, bodies evolved onboard computers - brains. Brains evolved the capacity to communicate with other brains by means of language and cultural traditions. But the new milieu of cultural tradition opens up new possibilities for selfreplicating entities. The new replicators are not DNA and they are not clay crystals. They are patterns of information that can thrive only in brains or the artificially manufactured products of brains books, computers, and so on. But, given that brains, books and computers exist, these new replicators, which I called memes to distinguish them from genes, can propagate themselves from brain to brain, from brain to book, from book to brain, from brain to computer, from computer to computer. As they propagate they can change - mutate. And perhaps ‘mutant’ memes can exert the kinds of influence that I am here calling ‘replicator power’. Remember that this means any kind of influence affecting their own likelihood of being propagated. Evolution under the influence of the new replicators - memic evolution - is in its infancy. It is manifested in the phenomena that we call cultural evolution. Cultural evolution is many orders of magnitude faster than DNAbased evolution, which sets one even more to thinking of the idea of ‘takeover’. And if a new kind of replicator takeover is beginning, it is conceivable that it will take off so far as to leave its parent DNA (and its grandparent clay if Cairns-Smith is right) far behind. If so, we may be sure that computers will be in the van.

Could it be that one far-off day intelligent computers will speculate about their own lost origins? Will one of them tumble to the heretical truth, that they have sprung from a remote, earlier form of life, rooted in organic, carbon chemistry, rather than the silicon-based electronic principles of their own bodies? Will a robotic Cairns-Smith write a book called
Electronic Takeover
! Will he rediscover some electronic equivalent of the metaphor of the arch, and realize that computers could not have sprung spontaneously into existence but must have originated from some earlier process of cumulative selection? Will he go into detail and reconstruct DNA as a plausible early replicator, victim of electronic usurpation? And will he be far-sighted enough to guess that even DNA may itself have been a usurper of yet more remote and primitive replicators, crystals of inorganic silicates? If he is of a poetic turn of mind, will he even see a kind of justice in the eventual return to silicon-based life, with DNA no more than an interlude, albeit one that lasted longer than three aeons?

That is science fiction, and it probably sounds far-fetched. That doesn’t matter. Of more immediate moment is that Cairns-Smith’s own theory, and indeed all other theories of the origin of life, may sound far-fetched to you and hard to believe. Do you find both Cairns-Smith’s clay theory, and the more orthodox organic primevalsoup theory, wildly improbable? Does it sound to you as though it would need a miracle to make randomly jostling atoms join together into a selfreplicating molecule? Well, at times it does to me too. But let’s look more deeply into this matter of miracles and improbability. By doing so, I shall demonstrate a point which is paradoxical but all the more interesting for that. This is that we should, as scientists, be even a little worried if the origin of life did
not
seem miraculous to our own human consciousness. An apparently (to ordinary human consciousness) miraculous theory is
exactly
the kind of theory we should be looking for in this particular matter of the origin of life. This argument, which amounts to a discussion of what we mean by a miracle, will occupy the rest of this chapter. In a way it is an extension of the argument we made earlier about billions of planets.

Other books

Say the Word by Julie Johnson
Husband Rehab by Curtis Hox
Prudence Pursued by Shirley Raye Redmond
Addicted by Charlotte Stein
Dream a Little Dream by Debra Clopton
Once Upon a Beanstalk by Kate Avery Ellison