Volvamos a ello otra vez. La desintegración de los piones genera muones cuyo espín apunta en la dirección en la que se mueven. Esta es una parte del milagro. Ahora tenemos que parar los muones para que podamos observar la dirección de los electrones que emiten al desintegrarse. Como sabemos la dirección del movimiento justo antes de que den en el bloque de carbono, si nada hace que su espín apunte de manera diferente sabremos la dirección del espín cuando se paran y cuando se desintegran. Todo lo que tenemos que hacer es rotar el brazo de detección de los electrones alrededor del bloque donde los muones reposan para contrastar la simetría especular.
Empezaron a sudarme las manos mientras repasaba lo que tenía que hacer. Todos los contadores existían. Los dispositivos electrónicos que señalaban la llegada del muón de alta energía y la entrada en el bloque de grafito del muón frenado ya estaban puestos en su sitio y bien comprobados. También existía un «telescopio» de cuatro contadores para la detección del electrón que salía tras la desintegración del muón. Todo lo que teníamos que hacer era montarlos en un cuadro de algún tipo que pudiese girar alrededor del centro del bloque de detención. Una o dos horas de trabajo. ¡Guau! Me convencí de que sería una larga noche.
Cuando paré en casa para cenar deprisa y bromear un poco con los chicos, llamó por teléfono Richard Garwin, físico de la IBM. Investigaba procesos atómicos en los laboratorios de investigación de la IBM, que estaban justo afuera del campus de Columbia. Dick se pasaba muy a menudo por el departamento de físicas, pero se había perdido la comida china y quería saber lo último sobre el experimento de Wu.
«Eh, Dick, tengo una gran idea sobre cómo podemos comprobar la violación de la paridad de la manera más simple que puedas imaginarte.» Se lo expliqué apresuradamente y le dije: «¿Por qué no te acercas con el coche al laboratorio y nos echas una mano?». Dick vivía cerca, en Scarsdale. A las ocho ya estábamos desmontando el aparato de mi muy confuso y disgustado alumno graduado. ¡Marcel tenía que ver cómo le desmantelábamos su experimento de doctorado! A Dick se le encomendó que abordase el problema de hacer rotar el telescopio de electrones de forma que pudiésemos determinar la distribución de los electrones alrededor del eje supuesto del espín. No era un problema trivial, pues al ir empujando en redondo el telescopio podría cambiar la distancia a los muones, y con ello se alteraría la cantidad de electrones detectados.
Entonces fue cuando nació la segunda idea clave; su padre fue Dick Garwin. Mirad, dijo, en vez de mover esa pesada plataforma de contadores en redondo, dejémosla quieta y demos vueltas a los muones con un imán. En cuanto caló en mí la sencillez y elegancia de la idea se me escapó una exclamación. ¡Claro! Una partícula cargada y con espín es un pequeño imán y girará como la aguja de una brújula en un campo magnético, a no ser que las fuerzas magnéticas que actúen sobre el imán-muón le hagan dar vueltas continuamente. La idea, de puro simple, era profunda.
Era pan comido calcular el valor del campo magnético que haría girar a los muones 360 grados en un tiempo razonable. ¿Qué es un tiempo razonable para un muón? Bueno, los muones se desintegran en electrones y neutrinos con una semivida de 1,5 microsegundos. Es decir, la mitad se consumiría en 1,5 microsegundos. Si los girábamos demasiado despacio, digamos 1 grado por microsegundo, casi todos desaparecerían antes de que se les hubiese rotado más que unos pocos grados, y no podríamos comparar el número de electrones emitidos desde el «
top
» del muón con los que saliesen del «
bottom
», tarea que era la única razón de ser de nuestro experimento. Si aumentábamos el ritmo de giro a, por ejemplo, 1.000 grados por microsegundo mediante la aplicación de un campo magnético intenso, la distribución pasaría zumbando ante el detector tan deprisa que nos saldría un resultado emborronado. Decidimos que la tasa ideal de giro sería de unos 45 grados por microsegundo.
Podíamos obtener el campo magnético requerido enrollando unos cuantos cientos de vueltas de hilo de cobre alrededor de un cilindro y haciendo pasar una corriente de unos pocos amperios por ellas. Encontramos un tubo de Lucite —una resina acrílica—, mandamos a Marcel al almacén a por cable, recortamos el bloque de grafito de detención de forma que encajara dentro del cilindro y enganchamos los cables a una fuente de energía que se podía manejar por control remoto (había una en la estantería). En un frenesí de actividad nocturna, estaba todo listo para medianoche. Teníamos prisa porque el acelerador se desconectaba siempre los sábados a las ocho de la mañana para que le hiciesen las operaciones de mantenimiento y las reparaciones.
A la una de la madrugada los contadores ya registraban datos; los registros de acumulación grababan el número de electrones emitidos en distintas direcciones. Pero acordaos de que, conforme al plan de Garwin, no medíamos esos ángulos directamente. El telescopio de electrones permanecía estacionario mientras los muones o, más bien, los vectores de sus ejes de espín, rotaban en un campo magnético. Así que el
instante
de llegada correspondía ahora a su dirección. Al registrar el momento, registrábamos la dirección. Ni que decir tiene que nos encontramos con un montón de problemas. Dimos la tabarra a los operarios del acelerador para que nos ofreciesen tantos protones que golpeasen el blanco como fuera posible. Había que ajustar todos los contadores que registran los muones que entran y se detienen. Había que comprobar el control del pequeño campo magnético que se aplicaba a los muones.
Tras unas cuantas horas de toma de datos, vimos una notable diferencia en los conteos de los electrones emitidos a cero grados, relativamente al espín, y los emitidos a 180 grados. Los datos eran muy burdos, y mezclábamos el optimismo apasionado con el escepticismo. Cuando examinamos los datos a las ocho de la mañana siguiente, nuestro escepticismo se confirmó. Los datos eran ahora mucho menos convincentes; no resultaban realmente incoherentes con la hipótesis de la equivalencia —un predictor de la simetría especular— de todas las direcciones de emisión. Les habíamos rogado a los operadores del acelerador que nos diesen cuatro horas más, pero no sirvió de nada. Los horarios eran los horarios. Desanimados, bajamos a la sala del acelerador, donde habíamos colocado el aparato. Allí nos esperaba una pequeña catástrofe. El cilindro de Lucite alrededor del que enrollamos el cable se había deformado a causa del calor que desprendió el paso de la corriente por los hilos. Por culpa de esa deformación se había caído el bloque de detención y, claro está, los muones dejaron de estar en el campo magnético que les habíamos preparado. Tras algunas recriminaciones (¡échale la culpa al alumno graduado!), nos pusimos contentos. ¡A lo mejor nuestra impresión original era la correcta!
Hicimos un plan para el fin de semana. Había que diseñar un campo magnético adecuado, pensar en aumentar el número de muones que se detienen y la fracción de electrones de desintegración contados, pensar en qué les pasa a los muones cargados positivamente en las colisiones que sufren mientras se van parando y en los microsegundos que permanecen quietos en la red de átomos de carbono. Al fin y al cabo, si un muón positivo consigue capturar uno de los muchos electrones que tienen libertad para moverse por el grafito, el electrón podría despolarizar fácilmente el muón (desordenar su espín), con lo que no todos los muones harían, durante la fase de encierro, lo mismo.
Los tres nos fuimos a casa a dormir unas pocas horas, antes de juntarnos de nuevo a las dos de la tarde. Trabajamos todo el fin de semana; cada uno tenía asignada una tarea. Yo me encargué de calcular de nuevo el movimiento del muón desde que nace impulsado hacia adelante por su desintegrado pión padre, a lo largo de su arco hacia el canal y a través de la pared de hormigón hacia nuestro aparato. Seguí la evolución del espín y de la dirección. Presupuse que la violación de la simetría especular era máxima, así que el espín de todos los muones apuntaría precisamente en la dirección del movimiento. Todo indicaba que si la violación era grande, incluso aunque sólo fuera la mitad del máximo, veríamos una curva oscilante. Esto no sólo demostraría la violación de la paridad, sino que nos daría un resultado numérico que expresaría hasta qué punto se había violado, desde el 100 por 100 a (¡no!, ¡no!) el 0 por 100. El que os diga que los científicos son desapasionados y fríamente objetivos está loco. Ansiábamos desesperadamente ver la paridad violada. La paridad no era una señora joven, y nosotros no éramos quinceañeros, pero lograr un descubrimiento nos excitaba. La piedra de toque de la objetividad científica es que no se deje a la pasión influir en la metodología y en la autocrítica.
Garwin desechó el cilindro de Lucite y enrolló la bobina directamente en una pieza nueva de grafito, y probó el sistema con corrientes el doble de intensas que las que necesitábamos. Marcel dispuso de nuevo los contadores, mejoró la alineación, acercó el telescopio de electrones al bloque de detención, comprobó y mejoró la eficacia de todos los contadores, y todo ello mientras rezábamos para que de esa actividad frenética saliera algo publicable.
El trabajo avanzó despacio. El lunes por la mañana habían llegado algunas noticias de nuestra intensa actividad a la plantilla de operadores y a algunos de nuestros compañeros. Los del mantenimiento del acelerador tuvieron algunos problemas serios con la máquina; perdíamos el lunes: no habría haz hasta el martes a las ocho de la mañana. Muy bien, más tiempo para mesarse los cabellos, morderse las uñas, hacer comprobaciones. Los compañeros del campus de Columbia vinieron a Nevis, por curiosidad; querían saber a dónde íbamos a parar. Un joven inteligente que había estado en la comida china me hizo unas cuantas preguntas y, por la poca franqueza de mis respuestas, dedujo que intentábamos hacer el experimento de la paridad.
«No saldrá bien —me aseguró—, los muones se despolarizarán a medida que pierdan energía en el filtro de grafito.» Yo me deprimía con facilidad, pero no me desalentaba. Me acordé de mi mentor, el gran sabio de Columbia, I. I. Rabi, que nos decía: el espín es muy escurridizo.
Alrededor de las seis de la tarde del lunes, antes de lo que se había programado, la máquina empezó a dar señales de vida. Apresuramos nuestras preparaciones, y comprobamos todos los aparatos y arreglos. Me di cuenta de que parecía que el blanco, con su elegante enrollamiento de hilo de cobre, colocado en una placa de unos diez centímetros de grueso, estaba un poco bajo. Mirando por un telescopio de inspección comprobé que era así y busqué algo que lo levantase dos o tres centímetros. Vi en un rincón una lata de café Maxwell House, a medias llena de tornillos, y la puse en lugar de la placa. ¡Perfecto! (Cuando la Institución Smithsoniana quiso luego la lata para reproducir el experimento, no pudimos encontrarla.)
El altavoz anunció que la máquina estaba a punto de encenderse y que todos los experimentadores tenían que abandonar la sala del acelerador (o freírse). Subimos por la escalerilla de hierro, cruzamos el aparcamiento y entramos en el edificio del laboratorio, donde los cables de los detectores estaban conectados a los estantes electrónicos que contenían los circuitos, los contadores, los osciladores. Garwin se había ido a casa hacía horas, y mandé a Marcel que trajese algo para cenar mientras yo me ponía a ejecutar un procedimiento de comprobación de las señales que llegaban desde los detectores. Empleamos un libro de notas de laboratorio grande, gordo, que servía para apuntar toda la información pertinente. Estaba alegremente adornado con grafitis —«¡Oh, mierda!» «¿A quién puñetas se le olvidó apagar la cafetera?» «Tu mujer ha llamado»— junto a las anotaciones de las cosas que hay que hacer, las que se han hecho, las condiciones de los circuitos. («Mira el contador número 3. Tiende a echar chispas y se le escapan cuentas.»)
A las siete y cuarto de la tarde la intensidad de fotones tenía ya el nivel corriente y el blanco productor de piones había sido puesto en su sitio por control remoto. Instantáneamente, los contadores empezaron a registrar la llegada de las partículas. Me quedé mirando la fila de los contadores cruciales: los que registrarían el número de electrones emitidos a distintos intervalos una vez se hubiesen parado los muones. Los números eran todavía muy pequeños: 6, 13, 8…
Garwin llegó a las nueve y media, más o menos. Decidí irme a dormir un poco; le relevaría a las seis de la mañana siguiente. Conduje a casa muy despacio. Llevaba despierto unas veinte horas y estaba demasiado cansado para comer. Cuando sonó el teléfono, parecía que acababa de caer en la cama. El reloj decía que eran las tres de la madrugada. Era Garwin. «Lo mejor será que vengas. ¡Lo hemos conseguido!»
A las tres y veinticinco aparqué en el laboratorio y entré corriendo. Garwin había pegado tiras de papel con las lecturas de los contadores en el libro. Los números eran rotundamente claros. A cero grados se emitía más del doble de electrones que a ciento ochenta. La naturaleza podía distinguir un espín a derechas de un espín a izquierdas. En ese momento la máquina había llegado a su intensidad óptima y los registros de los contadores cambiaban rápidamente. El contador de los cero grados leía 2.560, el de los 180, 1.222. Desde un punto de vista puramente estadístico, era abrumador. Los contadores intermedios parecían caer en medio como debían. Las consecuencias de la violación de la paridad en semejante grado eran tan grandes… Miré a Dick. Me empezaba a ser difícil respirar, las manos me sudaban, se me aceleraba el pulso, me sentía eufórico: muchos de los síntomas (¡no todos!) de la excitación sexual. Era algo gordo. Empecé a hacer una lista de comprobaciones: ¿qué elementos podían fallar de manera tal que simulasen el resultado que veíamos? Había tantas posibilidades. Nos pasamos una hora, por ejemplo, comprobando los circuitos que servían para contar los electrones. No tenían ningún problema. ¿De qué otra forma podríamos contrastar nuestras conclusiones?
Martes, cuatro y media de la madrugada. Le pedimos al operador que apagase el haz. Corrimos abajo e hicimos girar físicamente el telescopio de electrones noventa grados. Si sabíamos lo que estábamos haciendo, el patrón debería desplazarse un intervalo temporal correspondiente a noventa grados. ¡Bingo! ¡El patrón se desplazó como habíamos predicho!
Seis de la madrugada. Llamé por teléfono a T. D. Lee. Respondió cuando sólo había sonado una vez. «T. D., hemos estado mirando la cadena pión-muón-electrón y tenemos ahora una señal de desviación de veinte medidas estándar. La ley de la paridad ha muerto.» La reacción de T. D. salía a borbotones por el teléfono. Hacía preguntas rápidas: «¿Qué energía los electrones? ¿Cómo varía la asimetría con la energía de los electrones? ¿Era el espín del muón paralelo a la dirección de llegada?». Para algunas de las preguntas teníamos respuestas. Otras las obtuvimos ese mismo día. Garwin se puso a dibujar las gráficas y a introducir las lecturas de los contadores. Yo hice otra lista con las cosas que había que hacer. A las siete empecé a recibir llamadas de los compañeros de Columbia que se habían enterado. Garwin se marchó a las ocho. Llegó Marcel (¡momentáneamente olvidado!). A las nueve la sala estaba abarrotada de colegas, técnicos, secretarias que intentaban saber qué pasaba.