The Selfish Gene (13 page)

Read The Selfish Gene Online

Authors: Richard Dawkins

BOOK: The Selfish Gene
3.57Mb size Format: txt, pdf, ePub

 

So far we have considered only what Maynard Smith calls 'symmetric' contests. This means we have assumed that the contestants are identical in all respects except their fighting strategy. Hawks and doves are assumed to be equally strong, to be equally well endowed with weapons and with armour, and to have an equal amount to gain from winning. This is a convenient assumption to make for a model, but it is not very realistic. Parker and Maynard Smith went on to consider asymmetric contests. For example, if individuals vary in size and fighting ability, and each individual is capable of gauging a rival's size in comparison to his own, does this affect the ESS that emerges? It most certainly does.

 

There seem to be three main sorts of asymmetry. The first we have just met: individuals may differ in their size or fighting equipment. Secondly, individuals may differ in how much they have to gain from winning. For instance an old male, who has not long to live anyway, might have less to lose if he is injured than a young male with the bulk of his reproductive life ahead of him.

 

Thirdly, it is a strange consequence of the theory that a purely arbitrary, apparently irrelevant, asymmetry can give rise to an ESS, since it can be used to settle contests quickly. For instance it will usually be the case that one contestant happens to arrive at the location of the contest earlier than the other. Call them 'resident' and 'intruder' respectively. For the sake of argument, I am assuming that there is no general advantage attached to being a resident or an intruder. As we shall see, there are practical reasons why this assumption may not be true, but that is not the point. The point is that even if there were no general reason to suppose that residents have an advantage over intruders, an ESS depending on the asymmetry itself would be likely to evolve. A simple analogy is to humans who settle a dispute quickly and without fuss by tossing a coin.

 

The conditional strategy: 'If you are the resident, attack; if you are the intruder, retreat', could be an ESS. Since the asymmetry is assumed to be arbitrary, the opposite strategy: 'If resident, retreat; if intruder, attack' could also be stable. Which of the two ESSs is adopted in a particular population would depend on which one happens to reach a majority first. Once a majority of individuals is playing one of these two conditional strategies, deviants from it are penalized. Hence, by definition, it is an ESS.

 

For instance, suppose all individuals are playing 'resident wins, intruder runs away'. This means they will win half their fights and lose half their fights. They will never be injured and they will never waste time, since all disputes are instantly settled by arbitrary convention. Now consider a new mutant rebel. Suppose he plays a pure hawk strategy, always attacking and never retreating. He will win when his opponent is an intruder. When his opponent is a resident he will run a grave risk of injury. On average he will have a lower pay-off than individuals playing according to the arbitrary rules of the ESS. A rebel who tries the reverse convention 'if resident run away, if intruder attack', will do even worse. Not only will he frequently be injured, he will also seldom win a contest. Suppose, though, that by some chance events individuals playing this reverse convention managed to become the majority. In this case their strategy would then become the stable norm, and deviation from it would be penalized. Conceivably, if we watched a population for many generations we would see a series of occasional flips from one stable state to the other.

 

However, in real life, truly arbitrary asymmetries probably do not exist. For instance, residents probably tend to have a practical advantage over intruders. They have better knowledge of local terrain. An intruder is perhaps more likely to be out of breath because he moved into the battle area, whereas the resident was there all the time. There is a more abstract reason why, of the two stable states, the 'resident wins, intruder retreats', one is the more probable in nature. This is that the reverse strategy, 'intruder wins, resident retreats' has an inherent tendency to self-destruction-it is what Maynard Smith would call a paradoxical strategy. In any population sitting at this paradoxical ESS, individuals would always be striving never to be caught as residents: they would always be trying to be the intruder in any encounter. They could only achieve this by ceaseless, and otherwise pointless, moving around! Quite apart from the costs in time and energy that would be incurred, this evolutionary trend would, of itself, tend to lead to the category 'resident' ceasing to exist. In a population sitting at the other stable state, 'resident wins, intruder retreats', natural selection would favour individuals who strove to be residents. For each individual, this would mean holding on to a particular piece of ground, leaving it as little as possible, and appearing to 'defend' it. As is now well known, such behaviour is commonly observed in nature, and goes by the name of 'territorial defence'.

 

The neatest demonstration I know of this form of behavioural asymmetry was provided by the great ethologist
Niko Tinbergen, in an experiment of characteristically ingenious simplicity. He had a fish-tank containing two male sticklebacks. The males had each built nests, at opposite ends of the tank, and each 'defended' the territory

 

around
his own nest. Tinbergen placed each of the two males in a large glass test-tube, and he held the two tubes next to each other and watched the males trying to fight each other through the glass. Now comes the interesting result. When he moved the two tubes into the vicinity of male A's nest, male A assumed an attacking posture, and male B attempted to retreat. But when he moved the two tubes into male B's territory, the tables were turned. By simply moving the two tubes from one end of the tank to the other, Tinbergen was able to dictate which male attacked and which retreated. Both males were evidently playing the simple conditional strategy: 'if resident, attack; if intruder, retreat.'

 

Biologists often ask what the biological 'advantages' of territorial behaviour are. Numerous suggestions have been made, some of which will be mentioned later. But we can now see that the very question may be superfluous. Territorial 'defence' may simply be an ESS which arises because of the asymmetry in time of arrival that usually characterizes the relationship between two individuals and a patch of ground.

 

Presumably the most important kind of non-arbitrary asymmetry is in size and general fighting ability. Large size is not necessarily always the most important quality needed to win fights, but it is probably one of them. If the larger of two fighters always wins, and if each individual knows for certain whether he is larger or smaller than his opponent, only one strategy makes any sense: 'If your opponent is larger than you, run away. Pick fights with people smaller than you are.' Things are a bit more complicated if the importance of size is less certain. If large size confers only a slight advantage, the strategy I have just mentioned is still stable. But if the risk of injury is serious there may also be a second, 'paradoxical strategy'. This is: 'Pick fights with people larger than you are and run away from people smaller than you are'! It is obvious why this is called paradoxical. It seems completely counter to common sense. The reason it can be stable is this. In a population consisting entirely of paradoxical strategists, nobody ever gets hurt. This is because in every contest one of the participants, the larger, always runs away. A mutant of average size who plays the 'sensible' strategy of picking on smaller opponents is involved in a seriously escalated fight with half the people he meets. This is because, if he meets somebody smaller than him, he attacks; the smaller individual fights back fiercely, because he is playing paradoxical; although the sensible strategist is more likely to win than the paradoxical one, he still runs a substantial risk of losing and of being seriously injured. Since the majority of the population are paradoxical, a sensible strategist is more likely to be injured than any single paradoxical strategist.

 

Even though a paradoxical strategy can be stable, it is probably only of academic interest. Paradoxical fighters will only have a higher average pay-off if they very heavily out-number sensible ones. It is hard to imagine how this state of affairs could ever arise in the first place. Even if it did, the ratio of sensibles to paradoxicals in the population only has to drift a little way towards the sensible side before reaching the 'zone of attraction' of the other ESS, the sensible one. The zone of attraction is the set of population ratios at which, in this case, sensible strategists have the advantage: once a population reaches this zone, it will be sucked inevitably towards the sensible stable point. It would be exciting to find an example of a paradoxical ESS in nature, but I doubt if we can really hope to do so. (I spoke too soon. After I had written this last sentence, Professor Maynard Smith called my attention to the following description of the behaviour of the Mexican social spider, Oecobius
civitas, by J. W. Burgess: 'If a spider is disturbed and driven out of its retreat, it darts across the rock and, in the absence of a vacant crevice to hide in, may seek refuge in the hiding place of another spider of the same species. If the other spider is in residence when the intruder enters, it does not attack but darts out and seeks a new refuge of its own. Thus once the first spider is disturbed the process of sequential displacement from web to web may continue for several seconds, often causing a majority of the spiders in the aggregation to shift from their home refuge to an alien one (Social Spiders, Scientific American, March 1976).

 

What if individuals retain some memory of the outcome of past fights? This depends on whether the memory is specific or general. Crickets have a general memory of what happened in past fights. A cricket that has recently won a large number of fights becomes more hawkish. A cricket that has recently had a losing streak becomes more dovish. This was neatly shown by R. D. Alexander. He used a model cricket to beat up real crickets. After this treatment the real crickets became more likely to lose fights against other real crickets. Each cricket can be thought of as constantly updating his own estimate of his fighting ability, relative to that of an average individual in his population. If animals such as crickets, who work with a general memory of past fights, are kept together in a closed group for a time, a kind of dominance hierarchy is likely to develop. An observer can rank the individuals in order. Individuals lower in the order tend to give in to individuals higher in the order. There is no need to suppose that the individuals recognize each other. All that happens is that individuals who are accustomed to winning become even more likely to win, while individuals who are accustomed to losing become steadily more likely to lose. Even if the individuals started by winning or losing entirely at random, they would tend to sort themselves out into a rank order. This incidentally has the effect that the number of serious fights in the group gradually dies down.

 

I have to use the phrase 'kind of dominance hierarchy', because many people reserve the term dominance hierarchy for cases in which individual recognition is involved. In these cases, memory of past fights is specific rather than general. Crickets do not recognize each other as individuals, but hens and monkeys do. If you are a monkey, a monkey who has beaten you in the past is likely to beat you in the future. The best strategy for an individual is to be relatively dovish towards an individual who has previously beaten him. If a batch of hens who have never met before are introduced to each other, there is usually a great deal of fighting. After a time the fighting dies down. Not for the same reason as in the crickets, though. In the case of the hens it is because each individual 'learns her place' relative to each other individual. This is incidentally good for the group as a whole. As an indicator of this it has been noticed that in established groups of hens, where fierce fighting is rare, egg production is higher than in groups of hens whose membership is continually being changed, and in which fights are consequently more frequent. Biologists often speak of the biological advantage or 'function' of dominance hierarchies as being to reduce overt aggression in the group. However, this is the wrong way to put it. A dominance hierarchy perse cannot be said to have a 'function' in the evolutionary sense, since it is a property of a group, not of an individual. The individual behaviour patterns that manifest themselves in the form of dominance hierarchies when viewed at the group level may be said to have functions. It is, however, even better to abandon the word 'function' altogether, and to think about the matter in terms of ESSs in asymmetric contests where there is individual recognition and memory.

 

We have been thinking of contests between members of the same species. What about inter-specific contests? As we saw earlier, members of different species are less direct competitors than members of the same species. For this reason we should expect fewer disputes between them over resources, and our expectation is borne out. For instance, robins defend territories against other robins, but not against great tits. One can draw a map of the territories of different individual robins in a wood and one can superimpose a map of the territories of individual great tits. The territories of the two species overlap in an entirely indiscriminate way. They might as well be on different planets.

 

But there are other ways in which the interests of individuals from different species conflict very sharply. For instance a lion wants to eat an antelope's body, but the antelope has very different plans for its body. This is not normally regarded as competition for a resource, but logically it is hard to see why not. The resource in question is meat. The lion genes 'want' the meat as food for their survival machine. The antelope genes want the meat as working muscle and organs for their survival machine. These two uses for the meat are mutually incompatible, therefore there is conflict of interest.

Other books

Risky Temptation by Hart, Gemma
The Nazi Hunters by Andrew Nagorski
Death is a Word by Hazel Holt
Orson Welles, Vol I by Simon Callow
If Books Could Kill by Carlisle, Kate
Good Bones by Margaret Atwood
Son of Santa by Kate Sands
Flight of the Eagles by Gilbert L. Morris
Wordcatcher by Phil Cousineau
Toygasm by Jan Springer