The Selfish Gene (12 page)

Read The Selfish Gene Online

Authors: Richard Dawkins

BOOK: The Selfish Gene
5.99Mb size Format: txt, pdf, ePub

 

Superficially, this sounds a little like group selection, but it is really nothing of the kind. It sounds like group selection because it enables us to think of a population as having a stable equilibrium to which it tends to return when disturbed. But the ESS is a much more subtle concept than group selection. It has nothing to do with some groups being more successful than others. This can be nicely illustrated using the arbitrary points system of our hypothetical example. The average pay-off to an individual in a stable population consisting of 7/12 hawks and 5/12 doves, turns out to be 6 1/4. This is true whether the individual is a hawk or a dove. Now 6 1/4 is much less than the average pay-off for a dove in a population of doves (15). If only everybody would agree to be a dove, every single individual would benefit. By simple group selection, any group in which all individuals mutually agree to be doves would be far more successful than a rival group sitting at the ESS ratio. (As a matter of fact, a conspiracy of nothing but doves is not quite the most successful possible group. In a group consisting of 1/6 hawks and 5/6 doves, the average pay-off per contest is 16 2/3. This is the most successful possible conspiracy, but for present purposes we can ignore it. A simpler all-dove conspiracy, with its average pay-off for each individual of 15, is far better for every single individual than the ESS would be.) Group selection theory would therefore predict a tendency to evolve towards an all-dove conspiracy, since a group that contained a 7/12 proportion of hawks would be less successful. But the trouble with conspiracies, even those that are to everybody's advantage in the long run, is that they are open to abuse. It is true that everybody does better in an all-dove group than he would in an ESS group. But unfortunately, in conspiracies of doves, a single hawk does so extremely well that nothing could stop the evolution of hawks. The conspiracy is therefore bound to be broken by treachery from within. An ESS is stable, not because it is particularly good for the individuals participating in it, but simply because it is immune to treachery from within.

 

It is possible for humans to enter into pacts or conspiracies that are to every individual's advantage, even if these are not stable in the ESS sense. But this is only possible because every individual uses his conscious foresight, and is able to see that it is in his own long-term interests to obey the rules of the pact. Even in human pacts there is a constant danger that individuals will stand to gain so much in the short term by breaking the pact that the temptation to do so will be overwhelming. Perhaps the best example of this is price-fixing. It is in the long-term interests of all individual garage owners to standardize the price of petrol at some artificially high value. Price rings, based on conscious estimation of long-term best interests, can survive for quite long periods. Every so often, however, an individual gives in to the temptation to make a quick killing by cutting his prices. Immediately, his neighbours follow suit, and a wave of price cutting spreads over the country. Unfortunately for the rest of us, the conscious foresight of the garage owners then reasserts itself, and they enter into a new price-fixing pact. So, even in man, a species with the gift of conscious foresight, pacts or conspiracies based on long-term best interests teeter constantly on the brink of collapse due to treachery from within. In wild animals, controlled by the struggling genes, it is even more difficult to see ways in which group benefit or conspiracy strategies could possibly evolve. We must expect to find evolutionarily stable strategies everywhere.

 

In our hypothetical example we made the simple assumption that any one individual was either a hawk or a dove. We ended up with an evolutionarily stable ratio of hawks to doves. In practice, what this means is that a stable ratio of hawk genes to dove genes would be achieved in the gene pool. The genetic technical term for this state is stable polymorphism. As far as the maths are concerned, an exactly equivalent ESS can be achieved without polymorphism as follows. If every individual is capable of behaving either like a hawk or like a dove in each particular contest, an ESS can be achieved in which all individuals have the same probability of behaving like a hawk, namely 7/12 in our particular example. In practice this would mean that each individual enters each contest having made a random decision whether to behave on this occasion like a hawk or like a dove; random, but with a 7:5 bias in favour of hawk. It is very important that the decisions, although biased towards hawk, should be random in the sense that a rival has no way of guessing how his opponent is going to behave in any particular contest. It is no good, for instance, playing hawk seven fights in a row, then dove five fights in a row and so on. If any individual adopted such a simple sequence, his rivals would quickly catch on and take advantage. The way to take advantage of a simple sequence strategist is to play hawk against him only when you know he is going to play dove.

 

The hawk and dove story is, of course, naively simple. It is a 'model', something that does not really happen in nature, but which helps us to understand things that do happen in nature. Models can be very simple, like this one, and still be useful for understanding a point, or getting an idea. Simple models can be elaborated and gradually made more complex. If all goes well, as they get more complex they come to resemble the real world more. One way in which we can begin to develop the hawk and dove model is to introduce some more strategies. Hawk and dove are not the only possibilities. A more complex strategy which Maynard Smith and Price introduced is called Retaliator.

 

A retaliator plays like a dove at the beginning of every fight. That is, he does not mount an all-out savage attack like a hawk, but has a conventional threatening match. If his opponent attacks him, however, he retaliates. In other words, a retaliator behaves like a hawk when he is attacked by a hawk, and like a dove when he meets a dove. When he meets another retaliator he plays like a dove. A retaliator is a conditional strategist. His behaviour depends on the behaviour of his opponent.

 

Another conditional strategist is called Bully. A bully goes around behaving like a hawk until somebody hits back. Then he immediately runs away. Yet another conditional strategist is Prober-retaliator. A prober-retaliator is basically like a retaliator, but he occasionally tries a brief experimental escalation of the contest. He persists in this hawk-like behaviour if his opponent does not fight back. If, on the other hand, his opponent does fight back he reverts to conventional threatening like a dove. If he is attacked, he retaliates just like an ordinary retaliator.

 

If all the five strategies I have mentioned are turned loose upon one another in a computer simulation, only one of them, retaliator, emerges as evolutionarily stable. Prober-retaliator is nearly stable. Dove is not stable, because a population of doves would be invaded by hawks and bullies. Hawk is not stable, because a population of hawks would be invaded by doves and bullies. Bully is not stable, because a population of bullies would be invaded by hawks. In a population of retaliators, no other strategy would invade, since there is no other strategy that does better than retaliator itself. However, dove does equally well in a population of retaliators. This means that, other things being equal, the numbers of doves could slowly drift upwards. Now if the numbers of doves drifted up to any significant extent, prober-retaliators (and, incidentally, hawks and bullies) would start to have an advantage, since they do better against doves than retaliators do. Prober-retaliator itself, unlike hawk and bully, is almost an ESS, in the sense that, in a population of prober-retaliators, only one other strategy, retaliator, does better, and then only slightly. We might expect, therefore, that a mixture of retaliators and prober-retaliators would tend to predominate, with perhaps even a gentle oscillation between the two, in association with an oscillation in the size of a small dove minority. Once again, we don't have to think in terms of a polymorphism in which every individual always plays one strategy or another. Each individual could play a complex mixture between retaliator, prober-retaliator, and dove.

 

This theoretical conclusion is not far from what actually happens in most wild animals. We have in a sense explained the 'gloved fist' aspect of animal aggression. Of course the details depend on the exact numbers of 'points' awarded for winning, being injured, wasting time, and so on. In elephant seals the prize for winning may be near-monopoly rights over a large harem of females. The pay-off for winning must therefore be rated as very high. Small wonder that fights are vicious and the probability of serious injury is also high. The cost of wasting time should presumably be regarded as small in comparison with the cost of being injured and the benefit of winning. For a small bird in a cold climate, on the other hand, the cost of wasting time may be paramount. A great tit when feeding nestlings needs to catch an average of one prey per thirty seconds. Every second of daylight is precious. Even the comparatively short time wasted in a hawk /hawk fight should perhaps be regarded as more serious than the risk of injury to such a bird. Unfortunately, we know too little at present to assign realistic numbers to the costs and benefits of various outcomes in nature. We must be careful not to draw conclusions that result simply from our own arbitrary choice of numbers. The general conclusions which are important are that ESSs will tend to evolve, that an ESS is not the same as the optimum that could be achieved by a group conspiracy, and that common sense can be misleading.

 

Another kind of war game that Maynard Smith has considered is the 'war of attrition'. This can be thought of as arising in a species that never engages in dangerous combat, perhaps a well-armoured species in which injury is very unlikely. All disputes in this species are settled by conventional posturing. A contest always ends in one rival or the other backing down. To win, all you have to do is stand your ground and glare at the opponent until he finally turns tail. Obviously no animal can afford to spend infinite time threatening; there are important things to be done elsewhere. The resource he is competing for may be valuable, but it is not infinitely valuable. It is only worth so much time and, as at an auction sale, each individual is prepared to spend only so much on it. Time is the currency of this two-bidder auction.

 

Suppose all such individuals worked out in advance exactly how much time they thought a particular kind of resource, say a female, was worth. A mutant individual who was prepared to go on just a little bit longer would always win. So the strategy of maintaining a fixed bidding limit is unstable. Even if the value of the resource can be very finely estimated, and all individuals bid exactly the right value, the strategy is unstable. Any two individuals bidding according to this maximum strategy would give up at exactly the same instant, and neither would get the resource! It would then pay an individual to give up right at the start rather than waste any time in contests at all. The important difference between the war of attrition and a real auction sale is, after all, that in the war of attrition both contestants pay the price but only one of them gets the goods. In a population of maximum bidders, therefore, a strategy of giving up at the beginning would be successful and would spread through the population. As a consequence of this some benefit would start to accrue to individuals who did not give up immediately, but waited for a few seconds before giving up. This strategy would pay when played against the immediate retreaters who now predominate in the population. Selection would then favour a progressive extension of the giving-up time until it once more approached the maximum allowed by the true economic worth of the resource under dispute.

 

Once again, by using words, we have talked ourselves into picturing an oscillation in a population. Once again, mathematical analysis shows that this is not correct. There is an evolutionarily stable strategy, which can be expressed as a mathematical formula, but in words what it amounts to is this. Each individual goes on for an unpredictable time. Unpredictable on any particular occasion, that is, but averaging the true value of the resource. For example, suppose the resource is really worth five minutes of display. At the ESS, any particular individual may go on for more than five minutes or he may go on for less than five minutes, or he may even go on for exactly five minutes. The important thing is that his opponent has no way of knowing how long he is prepared to persist on this particular occasion.

 

Obviously, it is vitally important in the war of attrition that individuals should give no inkling of when they are going to give up. Anybody who betrayed, by the merest flicker of a whisker, that he was beginning to think of throwing in the sponge, would be at an instant disadvantage. If, say, whisker-flickering happened to be a reliable sign that retreat would follow within one minute, there would be a very simple winning strategy: if your opponent's whiskers flicker, wait one more minute, regardless of what your own previous plans for giving up might have been. If your opponent's whiskers have not yet flickered, and you are within one minute of the time when you intend to give up anyway, give up immediately and don't waste any more time. Never flicker your own whiskers.' So natural selection would quickly penalize whisker-flickering and any analogous betrayals of future behaviour. The poker face would evolve.

 

Why the poker face rather than out-and-out lies? Once again, because lying is not stable. Suppose it happened to be the case that the majority of individuals raised their hackles only when they were truly intending to go on for a very long time in the war of attrition. The obvious counterploy would evolve: individuals would give up immediately when an opponent raised his hackles. But now, liars might start to evolve. Individuals who really had no intention of going on for a long time would raise their hackles on every occasion, and reap the benefits of easy and quick victory. So liar genes would spread. When liars became the majority, selection would now favour individuals who called their bluff. Therefore liars would decrease in numbers again. In the war of attrition, telling lies is no more evolutionarily stable than telling the truth. The poker face is evolutionarily stable. Surrender, when it finally comes, will be sudden and unpredictable.

Other books

Viking's Love by Cairns, Karolyn
Love Inspired Suspense July 2015 #1 by Valerie Hansen, Sandra Orchard, Carol J. Post
Seize the Fire by Laura Kinsale
The Double Bind by Chris Bohjalian
The Stringer by Jeff Somers
The Maggot People by Henning Koch
Five Minutes More by Darlene Ryan