Read The Elegant Universe Online
Authors: Brian Greene
Moreover, Figure 12.7 illustrates a profound consequence of this new dimension. The structure of the Heterotic-E string changes as this dimension grows. It is stretched from a one-dimensional loop into a ribbon and then a deformed cylinder as we increase the size of the coupling constant! In other words, the Heterotic-E string is actually a two-dimensional membrane whose width (the vertical extent in Figure 12.7) is controlled by the size of the coupling constant. For over a decade, string theorists have always used perturbative methods that are firmly rooted in the assumption that the coupling constant is very small. As argued by Witten, this assumption has made the fundamental ingredients look and behave like one-dimensional strings even though they actually have a hidden, second spatial dimension. By relaxing the assumption that the coupling constant is very small and considering the physics of the Heterotic-E string when the coupling constant is large, the second dimension becomes manifest.
This realization does not invalidate any of the conclusions we have drawn in previous chapters, but it does force us to see them within a new framework. For instance, how does this all mesh with the one time and nine space dimensions required by string theory? Well, recall from Chapter 8 that this constraint arises from counting the number of independent directions in which a string can vibrate, and requiring that this number be just right to ensure that quantum-mechanical probabilities have sensible values. The new dimension we have just uncovered is not one in which a Heterotic-E string can vibrate, since it is a dimension that is locked within the structure of the “strings” themselves. Put another way, the perturbative framework that physicists used in deriving the requirement of a ten-dimensional spacetime assumed from the outset that the Heterotic-E coupling constant is small. Although it was not recognized until much later, this implicitly enforced two mutually consistent approximations: that the width of the membrane in Figure 12.7 is small, making it look like a string, and that the eleventh dimension is so small that it is beyond the sensitivity of the perturbative equations. Within this approximation scheme, we are led to envision a ten-dimensional universe filled with one-dimensional strings. Now we see that this is but an approximation to an eleven-dimensional universe containing two-dimensional membranes.
For technical reasons, Witten first came upon the eleventh dimension in his studies of the strong coupling properties of the Type I IA string, and there the story is quite similar. As in the Heterotic-E example, there is an eleventh dimension whose size is controlled by the Type IIA coupling constant. When its value is increased, the new dimension grows. As it does, Witten argued, the Type IIA string, rather than stretching into a ribbon as in the Heterotic-E case, expands into an “inner tube,” as illustrated in Figure 12.8. Once again, Witten argued that although theorists have always viewed Type IIA strings as one-dimensional objects, having only length but no thickness, this view is a reflection of the perturbative approximation scheme in which the string coupling constant is assumed to be small. If nature does require a small value of this coupling constant then it is a trustworthy approximation. Nevertheless, Witten’s arguments and those of other physicists during the second superstring revolution do give strong evidence that the Type IIA and Heterotic-E “strings” are, fundamentally, two-dimensional membranes living in an eleven-dimensional universe.
But what is this eleven-dimensional theory? At low energies (low compared to the Planck energy), Witten and others argued, it is approximated by the long-neglected eleven-dimensional supergravity quantum field theory. But for higher energies, how can we describe this theory? This topic is currently under intense scrutiny. We know from Figures 12.7 and 12.8 that the eleven-dimensional theory contains two-dimensional extended objects—two-dimensional membranes. And as we shall soon discuss, extended objects of other dimensions play an important role as well. But beyond a hodgepodge of properties, no one knows what this eleven-dimensional theory is. Are membranes its fundamental ingredients? What are its defining properties? How does it purport to make contact with physics as we know it? If the respective coupling constants are small, our best current answers to these questions are described in previous chapters, since at small coupling constants we are led back to the theory of strings. But if the coupling constants are not small, no one currently knows the answers.
Whatever the eleven-dimensional theory is, Witten has provisionally named it M-theory. The name stands for as many things as people you poll. Some samples: Mystery Theory, Mother Theory (as in “Mother of all Theories”), Membrane Theory (since, whatever it is, membranes seem to be part of the story), Matrix Theory (after some recent work by Tom Banks of Rutgers University, Willy Fischler of the University of Texas at Austin, Stephen Shenker of Rutgers University, and Susskind that offers a novel interpretation of the theory). But even without having a firm grasp on its name or its properties, it is already clear that M-theory provides a unifying substrate for pulling together all five string theories.
M-Theory and the Web of Interconnections
There is an old proverb about three blind men and an elephant. The first blind man grabs hold of the elephant’s ivory tusk and describes the smooth, hard surface that he feels. The second blind man grabs hold of one of the elephant’s legs. He describes the tough, muscular girth that he feels. The third blind man grabs hold of the elephant’s tail and describes the slender and sinewy appendage that he feels. Since their mutual descriptions are so different, and since none of the men can see the others, each thinks that he has grabbed hold of a different animal. For many years, physicists were as much in the dark as the blind men, thinking that the different string theories were very different. But now, through the insights of the second superstring revolution, physicists have realized that M-theory is the unifying pachyderm of the five string theories.
In this chapter we have discussed changes in our understanding of string theory that arise when we venture beyond the domain of the perturbative framework—a framework implicitly in use prior to this chapter. Figure 12.9 summarizes the interrelations we have found so far, with arrows to indicate dual theories. As you can see, we have a web of connections, but it is not yet complete. By also including the dualities of Chapter 10, we can finish the job.
Recall the large/small circular radius duality that interchanges a circular dimension of radius R with one whose radius is 1/R. Previously, we glossed over one aspect of this duality, which we now must clarify. In Chapter 10, we discussed the properties of strings in a universe with a circular dimension without carefully specifying which of the five string formulations we were working with. We argued that the interchange of winding and vibration modes of a string allows us to rephrase exactly the string theoretic description of a universe with a circular dimension of radius 1/R in terms of one in which the radius is R. The point we glossed over is that the Type IIA and Type IIB string theories actually get exchanged by this duality, as do the Heterotic-O and Heterotic-E strings. That is, the more precise statement of the large/small radius duality is this: The physics of the Type IIA string in a universe with a circular dimension of radius R is absolutely identical to the physics of the Type IIB string in a universe with a circular dimension of radius 1/R (a similar statement holds for the Heterotic-E and Heterotic-O strings). This refinement of the large/small radius duality has no significant effect on the conclusions of Chapter 10, but it does have an important impact on the present discussion.
The reason is that by providing a link between the Type IIA and Type IIB string theories, as well as between the Heterotic-O and Heterotic-E theories, the large/small radius duality completes the web of connections, as illustrated by the dotted lines in Figure 12.10. This figure shows that all five string theories, together with M-theory, are dual to one another. They are all sewn together into a single theoretical framework; they provide five different approaches to describing one and the same underlying physics. For some or other application, one phrasing may be far more effective than another. For instance, it’s far easier to work with the weakly coupled Heterotic-O theory than it is to work with the strongly coupled Type I string. Nevertheless, they describe exactly the same physics.
The Overall Picture
We can now more fully understand the two figures—Figures 12.1 and 12.2—that we introduced in the beginning of this chapter to summarize the essential points. In Figure 12.1 we see that prior to 1995, without taking any dualities into account, we had five apparently distinct string theories. Various physicists worked on each, but without an understanding of the dualities they appeared to be different theories. Each of the theories had variable features such as the size of their coupling constant and the geometrical form and sizes of curled-up dimensions. The hope was (and still is) that these defining properties would be determined by the theory itself, but without the ability to determine them with the current approximate equations, physicists have naturally studied the physics that follows from a range of possibilities. This is represented in Figure 12.1 by the shaded regions—each point in such a region denotes one specific choice for the coupling constant and the curled-up geometry. Without invoking any dualities, we still have five disjointed (collections of) theories.
But now, if we apply all of the dualities we have discussed, then as we vary the coupling and geometric parameters, we can pass from any one theory to any other, so long as we also include the unifying central region of M-theory; this is shown in Figure 12.2. Even though we have only a scant understanding of M-theory, these indirect arguments lend strong support to the claim that it provides a unifying substrate for our five naively distinct string theories. Moreover, we have learned that M-theory is closely related to yet a sixth theory—eleven-dimensional supergravity—and this is recorded in Figure 12.11, a more precise version of Figure 12.2.13
Figure 12.11 illustrates that the fundamental ideas and equations of M-theory, although only partially understood at the moment, unify those of all of the formulations of string theory. M-theory is the theoretical elephant that has opened the eyes of string theorists to a far grander unifying framework.
A Surprising Feature of M-Theory: Democracy in Extension
When the string coupling constant is small in any of the upper five peninsular regions of the theory map in Figure 12.11, the fundamental ingredient of the theory appears to be a one-dimensional string. We have, however, just gained a new perspective on this observation. If we start in either the Heterotic-E or Type IIA regions and turn the value of the respective string coupling constants up, we migrate toward the center of the map in Figure 12.11, and what appeared to be one-dimensional strings stretch into two-dimensional membranes. Moreover, through a more or less intricate sequence of duality relations involving both the string coupling constants and the detailed form of the curled-up spatial dimensions, we can smoothly and continuously move from any point in Figure 12.11 to any other. Since the two-dimensional membranes we have come upon from the Heterotic-E and Type IIA perspectives can be followed as we migrate to any of the three other string formulations in Figure 12.11, we learn that each of the five string formulations involves two-dimensional membranes as well.
This raises two questions. First, are two-dimensional membranes the true fundamental ingredient of string theory? And second, having made the bold leap in the 1970s and early 1980s from zero-dimensional point particles to one-dimensional strings, and having now seen that string theory actually involves two-dimensional membranes, might it be that there are even higher-dimensional ingredients in the theory as well? As of this writing, the answers to these questions are not fully known, but the situation appears to be the following.
We relied heavily on supersymmetry to give us some understanding of each formulation of string theory beyond the domain of validity of perturbative approximation methods. In particular, the properties of BPS states, their masses and their force charges, are uniquely determined by supersymmetry, and this allowed us to understand some of their strongly coupled characteristics without having to perform direct calculations of unimaginable difficulty. In fact, through the initial efforts of Horowitz and Strominger, and through subsequent groundbreaking work of Polchinski, we now know even more about these BPS states. In particular, not only do we know their masses and the force charges they carry, but we also have a clear understanding of what they look like. And the picture is, perhaps, the most surprising development of all. Some of the BPS states are one-dimensional strings. Others are two-dimensional membranes. By now, these shapes are familiar. But, the surprise is that yet others are three-dimensional, four-dimensional—in fact, the range of possibilities encompasses every spatial dimension up to and including nine. String theory or M-theory, or whatever it is finally called, actually contains extended objects of a whole slew of different spatial dimensions. Physicists have coined the term three-brane to describe extended objects with three spatial dimensions, four-brane for those with four spatial dimensions, and so on up to nine-branes (and, more generally, for an object with p space dimensions, where p represents a whole number, physicists have coined the far from euphonious terminology p-brane). Sometimes, using this terminology, strings are described as one-branes, and membranes as two-branes. The fact that all of these extended objects are actually part of the theory has led Paul Townsend to declare a “democracy of branes.”
Notwithstanding brane democracy, strings—one-dimensional extended objects—are special for the following reason. Physicists have shown that the mass of the extended objects of every dimension except for one-dimensional strings is inversely proportional to the value of the associated string coupling constant when we are in any of the five string regions of Figure 12.11. This means that with weak string coupling, in any of the five formulations, all but the strings will be enormously massive—orders of magnitude heavier than the Planck mass. Because they are so heavy and, therefore, from E = mc