The Book of the Damned (8 page)

Read The Book of the Damned Online

Authors: Charles Fort

BOOK: The Book of the Damned
9.18Mb size Format: txt, pdf, ePub

That, in 1836, M. Vallot, member of the French Academy, placed before the Academy some fragments of a gelatinous substance, said to have fallen from the sky, and asked that they be analyzed. There is no further allusion to this subject.

Comptes Rendus,
23-542:

That, in Wilna, Lithuania, April 4, 1846, in a rainstorm, fell nut-sized masses of a substance that is described as both resinous and gelatinous. It was odorless until burned: then it spread a very pronounced sweetish odor. It is described as like gelatin, but much firmer: but, having been in water twenty-four hours, it swelled out, and looked altogether gelatinous—

It was grayish.

We are told that, in 1841 and 1846, a similar substance had fallen in Asia Minor.

In
Notes and Queries,
8-6-190, it is said that, early in August, 1894, thousands of jellyfish, about the size of a shilling, had fallen at Bath, England. I think it is not acceptable that they were jellyfish: but it does look as if this time frog spawn did fall from the sky, and may have been translated by a whirlwind—because, at the same time, small frogs fell at Wigan, England.

Nature,
87-10:

That, June 24, 1911, at Eton, Bucks, England, the ground was found covered with masses of jelly, the size of peas, after a heavy rainfall. We are not told of nostoc, this time: it is said that the object contained numerous eggs of “some species of Chironomus, from which larvae soon emerged.”

I incline, then, to think that the objects that fell at Bath were neither jellyfish nor masses of frog spawn, but something of a larval kind—

This is what had occurred at Bath, England, 23 years before.

London
Times,
April 24, 1871:

That, upon the 22nd of April, 1871, a storm of glutinous drops neither jellyfish nor masses of frog spawn, but something of a [line missing here in original text. Ed.] railroad station, at Bath. “Many soon developed into a worm-like chrysalis, about an inch in length.” The account of this occurrence in the
Zoologist,
2-6-2686, is more like the Eton-datum: of minute forms, said to have been infusoria; not forms about an inch in length.

Trans. Ent. Soc. of London,
1871-proc. xxii:

That the phenomenon has been investigated by the Rev. L. Jenyns, of Bath. His description is of minute worms in filmy envelopes. He tries to account for their segregation. The mystery of it is: What could have brought so many of them together? Many other falls we shall have record of, and in most of them segregation is the great mystery. A whirlwind seems anything but a segregative force. Segregation of things that have fallen from the sky has been avoided as most deep-dyed of the damned. Mr. Jenyns conceives of a large pool, in which were many of these spherical masses: of the pool drying up and concentrating all in a small area; of a whirlwind then scooping all up together—

But several days later, more of these objects fell in the same place.

That such marksmanship is not attributable to whirlwinds seems to me to be what we think we mean by common sense:

It may not look like common sense to say that these things had been stationary over the town of Bath, several days—

The seven black rains of Slains;

The four red rains of Siena.

An interesting sidelight on the mechanics of orthodoxy is that Mr. Jenyns dutifully records the second fall, but ignores it in his explanation.

R.P. Greg, one of the most notable of cataloguers of meteoritic phenomena, records
(Phil. Mag.:
4-8-463) falls of viscid substance in the years 1652, 1686, 1718, 1796, 1811, 1819, 1844. He gives earlier dates, but I practice exclusions, myself. In the
Report of the British Association,
1860-63, Greg records a meteor that seemed to pass near the ground, between Barsdorf and Freiburg, Germany: the next day a jelly-like mass was found in the snow—

Unseasonableness for either spawn or nostoc.

Greg’s comment in this instance is: “Curious if true.” But he records without modification the fall of a meteorite at Gotha, Germany, Sept. 6, 1835, “leaving a jelly-like mass on the ground.” We are told that this substance fell only three feet away from an observer. In the
Report of the British Association,
1855-94, according to a letter from Greg to Prof. Baden-Powell, at night, Oct. 8, 1844, near Coblenz, a German, who was known to Greg, and another person saw a luminous body fall close to them. They returned next morning and found a gelatinous mass of grayish color.

According to Chladni’s account
(Annals of Philosophy,
n.s., 12-94) a viscous mass fell with a luminous meteorite between Siena and Rome, May, 1652; viscous matter found after the fall of a fire ball, in Lusatia, March, 1796; fall of a gelatinous substance, after the explosion of a meteorite, near Heidelberg, July, 1811. In the
Edinburgh Philosophical Journal,
1-234, the substance that fell at Lusatia is said to have been of the “color and odor of dried, brown varnish.” In the
Amer. Jour. Sci.,
1-26-133, it is said that gelatinous matter fell with a globe of fire, upon the island of Lethy, India, 1718.

In the
Amer. Jour. Sci.,
1-26-396, in many observations upon the meteors of November, 1833, are reports of falls of gelatinous substance:

That, according to newspaper reports, “lumps of jelly” were found on the ground at Rahway, N.J. The substance was whitish, or resembled the coagulated white of an egg;

That Mr. H.H. Garland, of Nelson County, Virginia, had found a jelly-like substance of about the circumference of a twenty-five-cent piece;

That, according to a communication from A.C. Twining to Prof. Olmstead, a woman at West Point, N.Y., had seen a mass the size of a teacup. It looked like boiled starch;

That, according to a newspaper, of Newark, N.J., a mass of gelatinous substance, like soft-soap, had been found. “It possessed little elasticity, and, on the application of heat, it evaporated as readily as water.”

It seems incredible that a scientist would have such hardihood, or infidelity, as to accept that these things had fallen from the sky: nevertheless, Prof. Olmstead, who collected these lost souls, says:

“The fact that the supposed deposits were so uniformly described as gelatinous substance forms a presumption in favor of the supposition that they had the origin ascribed to them.”

In contemporaneous scientific publications considerable attention was given to Prof. Olmstead’s series of papers upon this subject of the November meteors. You will not find one mention of the part that treats of gelatinous matter.

5

I shall attempt not much of correlation of dates. A mathematic-minded positivist, with his delusion that in an intermediate state twice two are four, whereas, if we accept Continuity, we cannot accept that there are anywhere two things to start with, would search our data for periodicities. It is so obvious to me that the mathematic, or the regular, is the attribute of the Universal that I have not much inclination to look for it in the local. Still, in this solar system, “as a whole,” there is considerable approximation to regularity; or the mathematic is so nearly localized that eclipses, for instance, can, with rather high approximation, be foretold, though I have notes that would deflate a little the astronomers’ vainglory in this respect—or would if that were possible. An astronomer is poorly paid, uncheered by crowds, considerably isolated: he lives upon his own inflations: deflate a bear and it couldn’t hibernate. This solar system is like every other phenomenon that can be regarded “as a whole”—or the affairs of a ward are interfered with by the affairs of the city of which it is a part; city by county; county by state; state by nation; nation by other nations; all nations by climatic conditions; climatic conditions by solar circumstances; sun by general planetary circumstances; solar system “as a whole” by other solar systems—so the hopelessness of finding the phenomena of entirety in the ward of a city. But positivists are those who try to find the unrelated in the ward of a city. In our acceptance this is the spirit of cosmic religion. Objectively the state is not realizable in the ward of a city. But, if a positivist could bring himself to absolute belief that he had found it that would be a subjective realization of that which is unrealizable objectively. Of course we do not draw a positive line between the objective and the subjective—or that all phenomena called things or persons are subjective within one all-inclusive nexus, and that thoughts within those that are commonly called “persons” are sub-subjective. It is rather as if Intermediateness strove for Regularity in this solar system and failed: then generated the mentality of astronomers, and, in that secondary expression, strove for conviction that failure had been success.

I have tabulated all the data of this book, and a great deal besides—card system—and several proximities, thus emphasized, have been revelations to me: nevertheless, it is only the method of theologians and scientists—worst of all, of statisticians.

For instance, by the statistic method, I could “prove” that a black rain has fallen “regularly” every seven months, somewhere upon this earth. To do this, I’d have to include red rains and yellow rains, but, conventionally, I’d pick out the black particles in red substances and in yellow substances, and disregard the rest. Then, too, if here and there a black rain should be a week early or a month late—that would be “acceleration” or “retardation.” This is supposed to be legitimate in working out the periodicities of comets. If black rains, or red or yellow rains with black particles in them, should not appear at all near some dates—we have not read Darwin in vain—“the records are not complete.” As to other, interfering black rains, they’d be either gray or brown, or for them we’d find other periodicities.

Still, I have had to notice the year 1819, for instance. I shall not note them all in this book, but I have records of 31 extraordinary events in 1883. Someone should write a book upon the phenomena of this one year—that is, if books should be written. 1849 is notable for extraordinary falls, so far apart that a local explanation seems inadequate—not only the black rain of Ireland, May, 1849, but a red rain in Sicily and a red rain in Wales. Also, it is said (Timb’s
Year Book,
1850-241) that, upon April 18 or 20, 1849, shepherds near Mt. Ararat, found a substance that was not indigenous, upon areas measuring eight to ten miles in circumference. Presumably it had fallen there.

We have already gone into the subject of Science and its attempted positiveness, and its resistances in that it must have relations of service. It is very easy to see that most of the theoretic science of the 19th century was only a relation of reaction against theologic dogma, and has no more to do with Truth than has a wave that bounds back from a shore. Or, if a shop girl, or you or I, should pull out a piece of chewing gum about a yard long, that would be quite as scientific a performance as was the stretching of this earth’s age several hundred millions of years.

All “things” are not things, but only relations, or expressions of relations: but all relations are striving to be the unrelated, or have surrendered to, and subordinated to, higher attempts. So there is a positivist aspect to this reaction that is itself only a relation, and that is the attempt to assimilate all phenomena under the materialist explanation, or to formulate a final, all-inclusive system, upon the materialist basis. If this attempt could be realized, that would be the attaining of realness; but this attempt can be made only by disregarding psychic phenomena, for instance—or, if science shall eventually give in to the psychic, it would be no more legitimate to explain the immaterial in terms of the material than to explain the material in terms of the immaterial. Our own acceptance is that material and immaterial are of a oneness, merging, for instance, in a thought that is continuous with a physical action: that oneness cannot be explained, because the process of explaining is the interpreting of something in terms of something else. All explanation is assimilation of something in terms of something else that has been taken as a basis: but, in Continuity, there is nothing that is any more basic than anything else—unless we think that delusion built upon delusion is less real than its pseudo-foundation.

In 1829 (Timb’s
Year Book,
1848-235) in Persia fell a substance that the people said they had never seen before. As to what it was, they had not a notion, but they saw that the sheep ate it. They ground it into flour and made bread, said to have been passable enough, though insipid.

That was a chance that science did not neglect. Manna was placed upon a reasonable basis, or was assimilated and reconciled with the system that had ousted the older—and less nearly real—system. It was said that, likely enough, manna had fallen in ancient times—because it was still falling—but that there was no tutelary influence behind it—that it was a lichen from the steppes of Asia Minor—“up from one place in a whirlwind and down in another place.” In the
American Almanac,
1833-71, it is said that this substance—“unknown to the inhabitants of the region”—was “immediately recognized” by scientists who examined it: and that “the chemical analysis also identified it as a lichen.”

This was back in the days when Chemical Analysis was a god. Since then his devotees have been shocked and disillusioned. Just how a chemical analysis could so botanize, I don’t know—but it was Chemical Analysis who spoke, and spoke dogmatically. It seems to me that the ignorance of inhabitants, contrasting with the local knowledge of foreign scientists, is overdone: if there’s anything good to eat, within any distance conveniently covered by a whirlwind—inhabitants know it. I have data of other falls, in Persia and Asiatic Turkey, of edible substances. They are all dogmatically said to be “manna”; and “manna” is dogmatically said to be a species of lichens from the steppes of Asia Minor. The position that I take is that this explanation was evolved in ignorance of the fall of vegetable substances, or edible substances, in other parts of the world: that it is the familiar attempt to explain the general in terms of the local; that, if we shall have data of falls of vegetable substance, in, say, Canada or India, they were not of lichens from the steppes of Asia Minor; that, though all falls in Asiatic Turkey and Persia are sweepingly and conveniently called showers of “manna,” they have not been even all of the same substance. In one instance the particles are said to have been “seeds.” Though, in
Comptes Rendus,
the substance that fell in 1841 and 1846 is said to have been gelatinous, in the
Bull. Sci. Nat. de Neuchatel,
it is said to have been of something, in lumps the size of a filbert, that had been ground into flour; that of this flour had been made bread, very attractive-looking, but flavorless.

The great difficulty is to explain segregation in these showers—

But deep-sea fishes and occasional falls, down to them, of edible substances; bags of grain, barrels of sugar; things that had not been whirled up from one part of the ocean-bottom, in storms or submarine disturbances, and dropped somewhere else—

I suppose one thinks—but grain in bags never has fallen—

Object of Amherst—its covering like “milled cloth”—

Or barrels of corn lost from a vessel would not sink—but a host of them clashing together, after a wreck—they burst open; the corn sinks, or does when saturated; the barrel staves float longer—

If there be not an overhead traffic in commodities similar to our own commodities carried over this earth’s oceans—I’m not the deep-sea fish I think I am.

I have no data other than the mere suggestion of the Amherst object of bags or barrels, but my notion is that bags and barrels from a wreck on one of this earth’s oceans, would, by the time they reached the bottom, no longer be recognizable as bags or barrels; that, if we can have data of the fall of fibrous material that may have been cloth or paper or wood, we shall be satisfactory and grotesque enough.

Proc. Roy. Irish Acad.,
1-379:

“In the year 1686, some workmen, who had been fetching water from a pond, seven German miles from Memel, on returning to their work after dinner (during which there had been a snowstorm) found the flat ground around the pond covered with a coal-black, leafy mass; and a person who lived near said he had seen it fall like flakes with the snow.”

Some of these flake-like formations were as large as a table-top.

“The mass was damp and smelt disagreeably, like rotten seaweed, but, when dried, the smell went off.”

“It tore fibrously, like paper.”

Classic explanation:

“Up from one place, and down in another.”

But what went up, from one place, in a whirlwind? Of course, our Intermediatist acceptance is that had this been the strangest substance conceivable, from the strangest other world that could be thought of; somewhere upon this earth there must be a substance similar to it, or from which it would, at least subjectively, or according to description, not be easily distinguishable. Or that everything in New York City is only another degree or aspect of something, or combination of things, in a village of Central Africa. The novel is a challenge to vulgarization: write something that looks new to you: someone will point out that the thrice-accursed Greeks said it long ago. Existence is Appetite: the gnaw of being; the one attempt of all things to assimilate all other things, if they have not surrendered and submitted to some higher attempt. It was cosmic that these scientists, who had surrendered to and submitted to the Scientific System, should, consistently with the principles of that system, attempt to assimilate the substance that fell at Memel with some known terrestrial product. At the meeting of the Royal Irish Academy it was brought out that there is a substance, of rather rare occurrence, that has been known to form in thin sheets upon marsh land.

It looks like greenish felt.

The substance of Memel:

Damp, coal-black, leafy mass.

But, if broken up, the marsh-substance is flake-like, and it tears fibrously.

An elephant can be identified as a sunflower—both have long stems. A camel is indistinguishable from a peanut—if only their humps be considered.

Trouble with this book is that we’ll end up a lot of intellectual roués: we’ll be incapable of being astonished with anything. We knew, to start with, that science and imbecility are continuous; nevertheless so many expressions of the merging-point are at first startling. We did think that Prof. Hitchcock’s performance in identifying the Amherst phenomenon as a fungus was rather notable as scientific vaudeville, if we acquit him of the charge of seriousness—or that, in a place where fungi were so common that, before a given evening two of them sprang up, only he, a stranger in this very fungiferous place, knew a fungus when he saw something like a fungus—if we disregard its quick liquefaction, for instance. It was only a monologue, however: now we have an all-star cast: and they’re not only Irish; they’re royal Irish.

The royal Irishmen excluded “coal-blackness” and included fibrousness: so then that this substance was “marsh paper,” which “had been raised into the air by storms of wind, and had again fallen.”

Second act:

It was said that, according to M. Ehrenberg, “the meteor paper was found to consist partly of vegetable matter, chiefly of conifervae.”

Third act:

Meeting of the royal Irishmen: chairs, tables, Irishmen:

Some flakes of marsh-paper were exhibited.

Their composition was chiefly of conifervae.

This was a double inclusion: or it’s the method of agreement that logicians make so much of. So no logician would be satisfied with identifying a peanut as a camel, because both have humps: he demands accessory agreement—that both can live a long time without water, for instance.

Now, it’s not so very unreasonable, at least to the free and easy vaudeville standards that, throughout this book, we are considering, to think that a green substance could be snatched up from one place in a whirlwind, and fall as a black substance somewhere else: but the royal Irishmen excluded something else, and it is a datum that was as accessible to them as it is to me:

That, according to Chladni, this was no little, local deposition that was seen to occur by some indefinite person living near a pond somewhere.

It was a tremendous fall from a vast sky-area.

Likely enough all the marsh paper in the world could not have supplied it.

At the same time, this substance was falling “in great quantities,” in Norway and Pomerania. Or see Kirkwood,
Meteoric Astronomy,
p. 66:

“Substance like charred paper fell in Norway and other parts of northern Europe, Jan. 31, 1686.”

Other books

Death on a Platter by Elaine Viets
FireDance by Viola Grace
The Lion and the Lark by Malek, Doreen Owens
My Mixed-Up Berry Blue Summer by Jennifer Gennari
And Then I Found You by Patti Callahan Henry
Parker’s Price by Ann Bruce
Prey by Linda Howard
Halcón by Gary Jennings