Read The Book of the Damned Online

Authors: Charles Fort

The Book of the Damned (7 page)

BOOK: The Book of the Damned
8.16Mb size Format: txt, pdf, ePub
ads

In
Nature,
it is described as of a peculiar yellowish cast in one place, reddish somewhere else, and salmon-colored in another place.

Or there could be real science if there were really anything to be scientific about.

Or the science of chemistry is like a science of sociology, prejudiced in advance, because only to see is to see with a prejudice, setting out to “prove” that all inhabitants of New York came from Africa.

Very easy matter. Samples from one part of town. Disregard for all the rest.

There is no science but Wessex science.

According to our acceptance, there should be no other, but that approximation should be higher: that metaphysics is super-evil: that the scientific spirit is of the cosmic quest.

Our notion is that, in a real existence, such a quasi-system of fables as the science of chemistry could not deceive for a moment: but that in an “existence” endeavoring to become real, it represents that endeavor, and will continue to impose its pseudo-positiveness until it be driven out by a higher approximation to realness;

That the science of chemistry is as impositive as fortune-telling—

Or no—

That, though it represents a higher approximation to realness than does alchemy, for instance, and so drove out alchemy, it is still only somewhere between myth and positiveness.

The attempt at realness, or to state a real and unmodified fact here, is the statement:

All red rains are colored by sands from the Sahara Desert.

My own impositivist acceptances are:

That some red rains are colored by sands from the Sahara Desert;

Some by sands from other terrestrial sources;

Some by sands from other worlds, or from their deserts—also from aerial regions too indefinite or amorphous to be thought of as “worlds” or planets—

That no supposititious whirlwind can account for the hundreds of millions of tons of matter that fell upon Australia, Pacific Ocean and Atlantic Ocean and Europe in 1902 and 1903—that a whirlwind that could do that would not be supposititious.

But now we shall cast off some of our own wessicality by accepting that there have been falls of red substance other than sand.

We regard every science as an expression of the attempt to be real. But to be real is to localize the universal—or to make some one thing as wide as all things—successful accomplishment of which I cannot conceive of. The prime resistance to this endeavor is the refusal of the rest of the universe to be damned, excluded, disregarded, to receive Christian Science treatment, by something else so attempting. Although all phenomena are striving for the Absolute—or have surrendered to and have incorporated themselves in higher attempts, simply to be phenomenal, or to have seeming in Intermediateness is to express relations.

A river.

It is water expressing the gravitational relation of different levels.

The water of the river.

Expression of chemic relations of hydrogen and oxygen—which are not final.

A city.

Manifestation of commercial and social relations.

How could a mountain be without base in a greater body?

Storekeeper live without customers?

The prime resistance to the positivist attempt by Science is its relations with other phenomena, or that it only expresses those relations in the first place. Or that a Science can have seeming, or survive in Intermediateness, as something pure, isolated, positively different, no more than could a river or a city or a mountain or a store.

This Intermediateness—wide attempt by parts to be wholes—which cannot be realized in our quasi-state, if we accept that in it the co-existence of two or more wholes or universals is impossible-high approximation to which, however, may be thinkable—

Scientists and their dream of “pure science.”

Artists and their dream of “art for art’s sake.”

It is our notion that if they could almost realize, that would be almost realness: that they would instantly be translated into real existence. Such thinkers are good positivists, but they are evil in an economic and sociologic sense, if, in that sense, nothing has justification for being, unless it serve, or function for, or express the relations of, some higher aggregate. So Science functions for and serves society at large, and would, from society at large, receive no support, unless it did so divert itself or dissipate and prostitute itself. It seems that by prostitution I mean usefulness.

There have been red rains that, in the middle ages, were called “rains of blood.” Such rains terrified many persons, and were so unsettling to large populations, that Science, in its sociologic relations, has sought, by Mrs. Eddy’s method, to remove an evil—

That “rains of blood” do not exist;

That rains so called are only of water colored by sand from the Sahara Desert.

My own acceptance is that such assurances, whether fictitious or not, whether the Sahara is a “dazzling white” desert or not, have wrought such good effects, in a sociologic sense, even though prostitutional in the positivist sense, that, in the sociologic sense, they were well justified;

But that we’ve gone on: that this is the twentieth century; that most of us have grown up so that such soporifics of the past are no longer necessary:

That if gushes of blood should fall from the sky upon New York City, business would go on as usual.

We began with rains that we accepted ourselves were, most likely, only of sand. In my own still immature hereticalness—and by heresy, or progress, I mean, very largely, a return, though with many modifications, to the superstitions of the past, I think I feel considerable aloofness to the idea of rains of blood. Just at present, it is my conservative, or timid purpose, to express only that there have been red rains that very strongly suggest blood or finely divided animal matter—

Débris from interplanetary disasters.

Aerial battles.

Food supplies from cargoes of super-vessels, wrecked in interplanetary traffic.

There was a red rain in the Mediterranean region, March 6, 1888. Twelve days later, it fell again. Whatever this substance may have been, when burned, the odor of animal matter from it was strong and persistent.
(L’Astronomie,
1888-205.)

But—infinite heterogeneity—or débris from many different kinds of aerial cargoes—there have been red rains that have been colored by neither sand nor animal matter.

Annals of Philosophy,
16-226:

That, Nov. 2, 1819—week before the black rain and earthquake of Canada—there fell, at Blankenberge, Holland, a red rain. As to sand, two chemists of Bruges concentrated 144 ounces of the rain to four ounces—“no precipitate fell.” But the color was so marked that had there been sand, it would have been deposited, if the substance had been diluted instead of concentrated. Experiments were made, and various reagents did cast precipitates, but other than sand. The chemists concluded that the rainwater contained muriate of cobalt—which is not very enlightening: that could be said of many substances carried in vessels upon the Atlantic Ocean. Whatever it may have been, in the
Annales de Chimie,
2-12-432, its color is said to have been red-violet. For various chemic reactions, see
Quar. Jour. Roy. Inst.,
9-202, and
Edin. Phil. Jour.,
2-381.

Something that fell with dust said to have been meteoric, March 9, 10, 11, 1872: described in the
Chemical News,
25-300, as a “peculiar substance,” consisted of red iron ocher, carbonate of lime, and organic matter.

Orange-red hail, March 14, 1873, in Tuscany.
(Notes and Queries,
9-5-16.)

Rain of lavender-colored substance, at Oudon, France, Dec. 19, 1903.
(Bull. Soc. Met. de France,
1904-124.)

La Nature,
1885-2-351:

That, according to Prof. Schwedoff, there fell, in Russia, June 14, 1880, red hailstones, also blue hailstones, also gray hailstones.

Nature,
34-123:

A correspondent writes that he had been told by a resident of a small town in Venezuela, that there, April 17, 1886, had fallen hailstones, some red, some blue, some whitish: informant said to have been one unlikely ever to have heard of the Russian phenomenon; described as an “honest, plain countryman.”

Nature,
July 5, 1877, quotes a Roman correspondent to the London
Times
who sent a translation from an Italian newspaper that a red rain had fallen in Italy, June 23, 1877, containing “microscopically small particles of sand.”

Or, according to our acceptance, any other story would have been an evil thing, in the sociologic sense, in Italy, in 1877. But the English correspondent, from a land where terrifying red rains are uncommon, does not feel this necessity. He writes: “I am by no means satisfied that the rain was of sand and water.” His observations are that drops of this rain left stains “such as sandy water could not leave.” He notes that when the water evaporated, no sand was left behind.

L’Année Scientifique,
1888-75:

That, Dec. 13, 1887, there fell, in Cochin China, a substance like blood, somewhat coagulated.

Annales de Chimie,
85-266:

That a thick, viscous, red matter fell at Ulm, in 1812.

We now have a datum with a factor that has been foreshadowed; which will recur and recur and recur throughout this book. It is a factor that makes for speculation so revolutionary that it will have to be reinforced many times before we can take it into full acceptance.

Year Book of Facts,
1861-273:

Quotation from a letter from Prof. Campini to Prof. Matteucci:

That, upon Dec. 28, 1860, at about 7 a.m., in the northwestern part of Siena, a reddish rain fell copiously for two hours.

A second red shower fell at eleven o’clock.

Three days later, the red rain fell again.

The next day another red rain fell.

Still more extraordinarily:

Each fall occurred in “exactly the same quarter of town.”

4

It is in the records of the French Academy that, upon March 17, 1669, in the town of Châtillon-sur-Seine, fell a reddish substance that was “thick, viscous, and putrid.”

American Journal of Science,
1-41-404:

Story of a highly unpleasant substance that had fallen from the sky, in Wilson County, Tennessee. We read that Dr. Troost visited the place and investigated. Later we’re going to investigate some investigations—but never mind that now. Dr. Troost reported that the substance was clear blood and portions of flesh scattered upon tobacco fields. He argued that a whirlwind might have taken an animal up from one place, mauled it around, and have precipitated its remains somewhere else.

But, in volume 44, page 216, of the
Journal,
there is an apology. The whole matter is, upon newspaper authority, said to have been a hoax by Negroes, who had pretended to have seen the shower, for the sake of practicing upon the credulity of their masters: that they had scattered the decaying flesh of a dead hog over the tobacco fields.

If we don’t accept this datum, at least we see the sociologically necessary determination to have all falls accredited to earthly origins—even when they’re falls that don’t fall.

Annual Register,
1821-687:

That, upon the 13th of August, 1819, something had fallen from the sky at Amherst, Mass. It had been examined and described by Prof. Graves, formerly lecturer at Dartmouth College. It was an object that had upon it a nap, similar to that of milled cloth. Upon removing this nap, a buff-colored, pulpy substance was found. It had an offensive odor, and, upon exposure to the air, turned to a vivid red. This thing was said to have fallen with a brilliant light.

Also see the
Edinburgh Philosophical Journal,
5-295. In the
Annales de Chimie,
1821-67, M. Arago accepts the datum, and gives four instances of similar objects or substances said to have fallen from the sky, two of which we shall have with our data of gelatinous, or viscous matter, and two of which I omit, because it seems to me that the dates given are too far back.

In the
American Journal of Science,
1-2-335, is Professor Graves’ account, communicated by Professor Dewey:

That, upon the evening of August 13, 1819, a light was seen in Amherst—a falling object—sound as if of an explosion.

In the home of Prof. Dewey, this light was reflected upon a wall of a room in which were several members of Prof. Dewey’s family.

The next morning, in Prof. Dewey’s front yard, in what is said to have been the only position from which the light that had been seen in the room, the night before, could have been reflected, was found a substance “unlike anything before observed by anyone who saw it.” It was a bowl-shaped object, about eight inches in diameter, and one inch thick. Bright buff-colored, and having upon it a “fine nap.” Upon removing this covering, a buff-colored, pulpy substance of the consistency of soft-soap, was found—“of an offensive, suffocating smell.”

A few minutes of exposure to the air changed the buff color to “a livid color resembling venous blood.” It absorbed moisture quickly from the air and liquefied. For some of the chemic reactions, see the
Journal.

There’s another lost quasi-soul of a datum that seems to me to belong here:

London
Times,
April 19, 1836:

Fall of fish that had occurred in the neighborhood of Allahabad, India. It is said that the fish were of the chalwa species, about a span in length and a seer in weight—you know.

They were dead and dry.

Or they had been such a long time out of water that we can’t accept that they had been scooped out of a pond, by a whirlwind—even though they were so definitely identified as of a known local species—

Or they were not fish at all.

I incline, myself, to the acceptance that they were not fish, but slender, fish-shaped objects of the same substance as that which fell at Amherst—it is said that, whatever they were, they could not be eaten: that “in the pan, they turned to blood.”

For details of this story see the
Journal of the Asiatic Society of Bengal,
1834-307. May 16 or 17, 1834, is the date given in the
Journal.

In the
American Journal of Science,
1-25-362, occurs the inevitable damnation of the Amherst object:

Prof. Edward Hitchcock went to live in Amherst. He says that years later, another object, like the one said to have fallen in 1819, had been found at “nearly the same place.” Prof. Hitchcock was invited by Prof. Graves to examine it. Exactly like the first one. Corresponded in size and color and consistency. The chemic reactions were the same.

Prof. Hitchcock recognized it in a moment.

It was a gelatinous fungus.

He did not satisfy himself as to just the exact species it belonged to, but he predicted that similar fungi might spring up within twenty-four hours—

But, before evening, two others sprang up.

Or we’ve arrived at one of the oldest of the exclusionists’ conventions—or nostoc. We shall have many data of gelatinous substance said to have fallen from the sky: almost always the exclusionists argue that it was only nostoc, an Alga, or, in some respects, a fungus growth. The rival convention is “spawn of frogs or of fishes.” These two conventions have made a strong combination. In instances where testimony was not convincing that gelatinous matter had been seen to fall, it was said that the gelatinous substance was nostoc, and had been upon the ground in the first place: when the testimony was too good that it had fallen, it was said to be spawn that had been carried from one place to another in a whirlwind.

Now, I can’t say that nostoc is always greenish, any more than I can say that blackbirds are always black, having seen a white one: we shall quote a scientist who knew of flesh-colored nostoc, when so to know was convenient. When we come to reported falls of gelatinous substances, I’d like it to be noticed how often they are described as whitish or grayish. In looking up the subject, myself, I have read only of greenish nostoc. Said to be greenish, in
Webster’s Dictionary
—said to be “blue-green” in the
New International Encyclopedia
—“from bright green to olive-green”
(Science Gossip,
10-114); “green”
(Science Gossip,
7-260); “greenish”
(Notes and Queries,
1-11-219). It would seem acceptable that, if many reports of white birds should occur, the birds are not blackbirds, even though there have been white blackbirds. Or that, if often reported, grayish or whitish gelatinous substance is not nostoc, and is not spawn if occurring in times unseasonable for spawn.

“The Kentucky Phenomenon.”

So it was called, in its day, and now we have an occurrence that attracted a great deal of attention in its own time. Usually these things of the accursed have been hushed up or disregarded—suppressed like the seven black rains of Slains—but, upon March 3, 1876, something occurred, in Bath County, Kentucky, that brought many newspaper correspondents to the scene.

The substance that looked like beef that fell from the sky.

Upon March 3, 1876, at Olympian Springs, Bath County, Kentucky, flakes of a substance that looked like beef fell from the sky—“from a clear sky.” We’d like to emphasize that it was said that nothing but this falling substance was visible in the sky. It fell in flakes of various sizes; some two inches square, one, three or four inches square. The flake-formation is interesting: later we shall think of it as signifying pressure—somewhere. It was a thick shower, on the ground, on trees, on fences, but it was narrowly localized: or upon a strip of land about 100 yards long and about fifty yards wide. For the first account, see the
Scientific American,
34-197, and the
New York Times,
March 10, 1876.

Then the exclusionists.

Something that looked like beef: one flake of it the size of a square envelope.

If we think of how hard the exclusionists have fought to reject the coming of ordinary-looking dust from this earth’s externality, we can sympathize with them in this sensational instance, perhaps. Newspaper correspondents wrote broadcast and witnesses were quoted, and this time there is no mention of a hoax, and, except by one scientist, there is no denial that the fall did take place.

It seems to me that the exclusionists are still more emphatically conservators. It is not so much that they are inimical to all data of externally derived substances that fall upon this earth, as that they are inimical to all data discordant with a system that does not include such phenomena—

Or the spirit or hope or ambition of the cosmos, which we call attempted positivism: not to find out the new; not to add to what is called knowledge, but to systematize.

Scientific American Supplement,
2-426:

That the substance reported from Kentucky had been examined by Leopold Brandeis.

“At last we have a proper explanation of this much talked of phenomenon.”

“It has been comparatively easy to identify the substance and to fix its status. The Kentucky ‘wonder’ is no more or less than nostoc.”

Or that it had not fallen; that it had been upon the ground in the first place, and had swollen in rain, and, attracting attention by greatly increased volume, had been supposed by unscientific observers to have fallen in rain—

What rain, I don’t know.

Also it is spoken of as “dried” several times. That’s one of the most important of the details.

But the relief of outraged propriety, expressed in the
Supplement,
is amusing to some of us, who, I fear, may be a little improper at times. Very spirit of the Salvation Army, when some third-rate scientist comes out with an explanation of the vermiform appendix or the os coccygis that would have been acceptable to Moses. To give completeness to “the proper explanation,” it is said that Mr. Brandeis had identified the substance as “flesh-colored” nostoc.

Prof. Lawrence Smith, of Kentucky, one of the most resolute of the exclusionists:

New York Times,
March 12, 1876:

That the substance had been examined and analyzed by Prof. Smith, according to whom it gave every indication of being the “dried” spawn of some reptile, “doubtless of the frog”—or up from one place and down in another. As to “dried,” that may refer to condition when Prof. Smith received it.

In the
Scientific American Supplement,
2-473, Dr. A. Mead Edwards, President of the Newark Scientific Association, writes that, when he saw Mr. Brandeis’ communication, his feeling was of conviction that propriety had been re-established, or that the problem had been solved, as he expresses it: knowing Mr. Brandeis well, he had called upon that upholder of respectability, to see the substance that had been identified as nostoc. But he had also called upon Dr. Hamilton, who had a specimen, and Dr. Hamilton had declared it to be lung tissue. Dr. Edwards writes of the substance that had so completely, or beautifully—if beauty is completeness—been identified as nostoc—“It turned out to be lung tissue also.” He wrote to other persons who had specimens, and identified other specimens as masses of cartilage or muscular fibers. “As to whence it came, I have no theory.” Nevertheless he endorses the local explanation—and a bizarre thing it is:

A flock of gorged, heavy-weighted buzzards, but far up and invisible in the clear sky—

They had disgorged.

Prof. Fassig lists the substance, in his “Bibliography,” as fish spawn. McAtee
(Monthly Weather Review,
May, 1918) lists it as a jelly-like material, supposed to have been the “dried” spawn either of fishes or of some batrachian.

Or this is why, against the seemingly insuperable odds against all things new, there can be what is called progress—

That nothing is positive, in the aspects of homogeneity and unity:

If the whole world should seem to combine against you, it is only unreal combination, or intermediateness to unity and disunity. Every resistance is itself divided into parts resisting one another. The simplest strategy seems to be—never bother to fight a thing: set its own parts fighting one another.

We are merging away from carnal to gelatinous substance, and here there is an abundance of instances or reports of instances. These data are so improper they’re obscene to the science of today, but we shall see that science, before it became so rigorous, was not so prudish. Chladni was not, and Greg was not.

I shall have to accept, myself, that gelatinous substance has often fallen from the sky—

Or that, far up, or far away, the whole sky is gelatinous?

That meteors tear through and detach fragments?

That fragments are brought down by storms?

That the twinkling of stars is penetration of light through something that quivers?

I think, myself, that it would be absurd to say that the whole sky is gelatinous: it seems more acceptable that only certain areas are.

Humboldt
(Cosmos,
1-119) says that all our data in this respect must be “classed amongst the mythical fables of mythology.” He is very sure, but just a little redundant.

We shall be opposed by the standard resistances:

There in the first place;

Up from one place, in a whirlwind, and down in another.

We shall not bother to be very convincing one way or another, because of the overshadowing of the datum with which we shall end up. It will mean that something had been in a stationary position for several days over a small part of a small town in England: this is the revolutionary thing that we have alluded to before; whether the substance were nostoc, or spawn, or some kind of a larval nexus, doesn’t matter so much. If it stood in the sky for several days, we rank with Moses as a chronicler of improprieties—or was that story, or datum, we mean, told by Moses? Then we shall have so many records of gelatinous substance said to have fallen with meteorites, that, between the two phenomena, some of us will have to accept connection—or that there are at least vast gelatinous areas aloft, and that meteorites tear through, carrying down some of the substance.

Comptes Rendus,
3-554:

BOOK: The Book of the Damned
8.16Mb size Format: txt, pdf, ePub
ads

Other books

The Sandman by Erin Kellison
Satan's Revenge by Celia Loren
When Marrying a Scoundrel by Kathryn Smith
Moonkind (Winterling) by Prineas, Sarah
Whitehorse by Katherine Sutcliffe
Beyond Fearless by Rebecca York
The Royal Mess by MaryJanice Davidson