Authors: Stephen Jay Gould
The evolutionary version of von Baer's law suggests that embryos may give us better clues about ancestry than adultsâbut not because they represent ancestral adults in miniature, as Haeckel and the recapitulationists believed. Rather, embryos indicate ancestry because generalized features of large groups offer better clues than do specialized traits of more-restricted lineages. In a standard example, some parasites become so anatomically degenerate as adults that they retain no distinctive traits of their larger affiliationâas, for example, in the parasitic barnacle
Sacculina
that, as an adult, becomes little more than an amorphous bag of feeding and reproductive tissue within the body of its crab host. But the larval stages that must seek and penetrate a crab can hardly be distinguished from the early stages of ordinary barnacles. Darwin made the key point succinctly when he stated in
The Origin of Species
that “community in embryonic structure reveals community of descent.”
Von Baer's law makes good senseâbut nothing in Darwinian theory implies or requires its validity, while evolution itself clearly permits embryology to proceed in either direction (or in no linearized manner at all)âeither from embryonic similarity to adult discordance (as in groups that follow von Baer's principle), or from larval discordance to adult likeness (as in several invertebrate groups, notably some closely related sea urchin species, where larvae have adapted to highly different lifestyles of planktonic floating versus development from yolk-filled eggs that remain on the sea floor, while the highly similar adults of both species continue to live and function like ordinary sea urchins).
The “bottom line”âto use a popular phrase from another walk of human
lifeâmay now be simply stated: the validity and relative frequency of von Baer's law remains an open, empirical question within evolutionary theory, an issue that can only be resolved by observational evidence from a wide variety of organisms. Moreover, this issue has become quite important in the light of current excitement over recent advances in genetics that have finally allowed us to identify and trace the genes regulating early development. In this crucial and valid context, Richardson wisely chose to reevaluate our complacency about the probable validity of von Baer's law.
Richardson realized that the continuing republication of Haeckel's fraudulent figures might be tipping our beliefs in von Baer's favor for indefensible reasons of inherited and unquestioned tradition (based on falsified drawings, to boot), rather than by good observational evidence. He therefore called attention to this likely source of unrecognized bias as he marshaled several colleagues to make the basic observations that could resolve a truly open question, falsely regarded by many colleagues as an issue decided long ago, partly on the basis of Haeckel's doctored evidence.
The jury will be out for some time as they debate, and actively research, this important issue, too long neglected, in the sciences of natural history. But the 1997 paper of Richardson and six colleagues has already poked some important holes in the old and (as we now learn) poorly documented belief in early embryonic similarity among related lineages, followed by increasing disparity toward adulthood. The early embryonic stages of vertebrates are not nearly so similar as Haeckel's phony drawings had led us to believe. For example, at the stage that Haeckel chose for maximal similarity, the somite count (number of vertebral segments) of actual vertebrate embryos ranges from eleven for a Puerto Rican tree frog to sixty for a “blind worm” (the common name for an unfamiliar group of limbless amphibians with a basically snakelike adult form). Moreover, although Haeckel drew his embryos as identical in both size and form, actual vertebrate embryos at their stage of maximal anatomical similarity span a tenfold range in body size.
In short, the work of Richardson and colleagues goes by a simple and treasured name in my trade: “good science.” The flap over Haeckel's doctored drawings should leave us feeling ashamed about the partial basis of a widely shared bias now properly exposed and already subjected to exciting new research. But Haeckel's high Victorian (or should I say Bismarckian) misdeeds provide no fodder to foes of Darwin, or of evolutionâalthough we should feel sheepish (and well instructed) about our belated obedience to a grand old motto: Physician, heal thyself.
In other words, to give von Baer and Agassiz a final due, we need not fear the first and second stages of a scientific revolution because we will fight like hell (perhaps unwisely and too well, but at least with gusto) so long as we regard a new idea as either ridiculous or opposed to “religion” (that is, to conventional belief). But we must beware the dreaded third stageâfor when we capitulate and then smugly state that we knew it all along, we easily fall into the greatest danger of allâarrogant complacencyâbecause we have ceased to question and observe. And no situation in science could possibly be more
abscheulich
âatrocious!
O
NE
FINE
DAY
,
OR
so
THE
LEGEND
PROCLAIMS
, J
OSEPH
Stalin received a telegram from his exiled archrival, Leon Trotsky. Overjoyed by the apparent content, Stalin rounded up the citizenry of Moscow for an impromptu rally in Red Square. He then addressed the crowd below: “I have received the following message of contrition from Comrade Trotsky, who has obviously been using his Mexican retreat for beneficial reflection: âComrade Stalin: You are right! I was wrong! You are the leader of the Russian people!'”
But as waves of involuntary applause rolled through the square, a Jewish tailor in the front rowâTrotsky's old school chum from yeshiva daysâbravely mounted the platform, tapped Stalin on the shoulder, and took the microphone to address the crowd. “Excuse me, Comrade Stalin,” he said. “The words, you got them right; but the meaning, I'm not so sure.” Then the tailor read the telegram again, this time with the intended intonation of disgust and the rising inflection of inquiry: â“Comrade Stalin:
You
are right??
I
was wrong??
You
are the leader of the Russian people??'”
Velociraptor,
a ground-running, meat-eating dinosaur from the Gobi, may well have been covered in feathers
.
I have never been able to regard this joke with equanimity, because I can't help wondering what happened to the poor tailor, who undoubtedly suffered far more than Trotsky, albeit anonymously. But I value the tale as a lesson about the importance of context. We may get every word right but, in a pungent military acronym (the superlative degree of
SNAFU
, I have been assured by army grammarians), still get the meaning
FUBAR
(defined by the dictionary, in genteel terms, as “fouled [euphemism] up beyond all recognition”). As an unfortunate, yet eminently understandable, consequence of its central status in biology and its challenging implications for our view of human origins and history, evolution probably exceeds all other scientific subjects in featuring straightforward facts enshrouded in difficult or ambiguous meanings.
The popular understanding of evolution includes at least two false assumptions, so widely shared and so deeply (if unconsciously) embedded in the context of conventional explanations that many plain facts, easily grasped at a superficial level of overt recitation, almost always enter the public discourse of newspapers, films, and magazines in a highly confused form that “science writers” either mistake for the actual opinions of scientists or, more cynically, choose
to present as the literary equivalent of “easy listening” for succor in drive-time traffic jams.
In the picture conveyed by these two related fallacies, evolution becomes, first of all, the transformation of one kind of entity into another, body and soul. So fish evolve into amphibians in a “conquest” of the land, and apes leave the safety of trees, eventually to become human by facing the dangers of terra firma with a weapon in their liberated hand and a fresh twinkle of insight emanating from an enlarged organ behind their eye. In the second component of this transformational view, descendants win victory from the heart of their valor in the face of natural selectionâfor “later” must mean “better,” as the land yields to explorational metaphors of conquest or colonization while the African savannas, for the first time in planetary history, ring with sounds of progress now expressed in the voice of real language.
But evolution proceeds by the branching of bushes, not by the morphing of one form into another, with the old disappearing into the triumph of the new. Novelties begin as little branches on old trees, not as butterflies of Michael Jordan refashioned from the caterpillar components of Joe Airball. Moreover, most novelties, at least at their origin, grow as tiny twigs of addition to persisting and vigorous bushes, not as higher realizations of ancestors that literally gave their all to a transcendence of their former grubby selves.
Amphibians and all their descendants have done well enough on land, but fins beat feet on the vertebrate bush, where the majority of twigs (species) sprout among fishes. I do not deny the transient success, and interesting novelties, of humans. But
Homo sapiens
occupies only one twig on a modest primate bush of some two hundred species, and even our most distantly related sub-groups, in both evolutionary and geographic terms (say, the San of southern Africa and the Sami of northern Finland), show very little genetic divergence, whereas two populations of the same species of chimpanzee, separated by only a few hundred miles of African real estate, have evolved many more genetic differences, one from the other. (This initially surprising fact makes evident sense once we recast our conceptions in properly bushy terms. All living humans descended from common ancestors who lived in Africa less than 200,000 years agoâdespite our subsequent spread throughout the world. The two chimpanzee populations may have remained in geographical proximity, but they split from a common ancestor far longer ago, thus providing much more time for the evolution of genetic differences in the separated groups.)
Finally, and at the broadest scale, we will grasp the principle that novelty arises by branching and not by the wholesale transformation of all ancestors into better descendants only when we recognize that bacteria still constitute
most of life's treeâincluding the entire basal trunk that they built by themselves at life's cellular originâand that all multicellular kingdoms occupy just a few, if admittedly quite healthy, branches at the terminus of a single bough.
Many of my essays stress this theme of mentally liberating bushes versus constraining ladders because I believe that no other misconception so skews public understanding of evolution. I have treated a variety of topics under this rubric: why the air bladders of fishes evolved from lungs and not vice versa, as nearly everyone assumes (including Darwin himself in this case); why the cramming of primates into a halfway corner, and not at a triumphant terminus, of a linear walk through the hall of fossil mammals in New York's Museum of Natural History makes such revolutionary sense; and why the “out of Africa” theory (on the origin of all modern humans from a recent population of African ancestors) and not the multiregional theory (of our threefold parallel origin from ancestral
Homo erectus
populations in Europe, Africa, and Asia) represents conventional evolutionary thought based on origin by branching and not the iconoclastic shock featured in most press reports, which have also misconstrued the truly peculiar and theoretically unlikely multiregional theory as transformational orthodoxy.
But I have heretofore desisted in applying this favorite theme to serious public misunderstandings of the apparently accurate claim that birds descended from dinosaursâprobably because I don't like to attack generalities head-on but prefer the path of insinuation by small but fascinating tidbits and also because dinosaurs really are just a tad overexposed and scarcely need more publicity from this student of snails. But my tidbit just arrived in the professional literature, thus permitting a tale about the bushy reform of avian origins at two levels: first the dreaded generality and then the tidbit.
1.
The basic relationship of birds and dinosaurs
. I don't mean to toss any cold water upon the almost surely valid claim, and one of the most interesting conclusions of late-twentieth-century paleontology, that birds descended from a lineage of small-bodied, bipedal dinosaurs. But the conventional interpretive “take” on this accurately stated fact could benefit from a flat-out dousing, if only because the gain in general understanding of evolution might more than compensate the loss of a charming but truly misleading characterization of a fact.
I should point out, first of all, that the basic claim does not justify the feelings of surprise or weirdness conveyed by most popular accounts. Birds did not evolve from massive sauropods or antediluvian, tanklike ankylosaurs or even from the large tyrannosaurs (which do, in fact, lie fairly close to birds on the dinosaur bush). Rather, birds branched off from a lineage of small, two-legged,
meat-eating, running dinosaursâfull members of the group by proper criteria of descent (hence the validity of the one-liner that “birds evolved from dinosaurs”), but scarcely a version calculated to evoke either the fear or the power associated with our usual icon of dinosaurian immensity.