El universo elegante (48 page)

Read El universo elegante Online

Authors: Brian Greene

Tags: #Divulgación Científica

BOOK: El universo elegante
11.97Mb size Format: txt, pdf, ePub

En particular, se evita un big crunch hasta el tamaño cero, ya que el radio del universo tal como se mide utilizando sondas del modo de cuerdas liviano siempre es mayor que la longitud de Planck. En vez de seguir avanzando a través de la longitud de Planck hacia tamaños aún menores, el radio, cuando se mide mediante los modos de cuerdas livianos, disminuye hasta la longitud de Planck y luego comienza inmediatamente a aumentar. El crunch queda reemplazado por un rebote.

El uso de los modos de cuerdas livianos para medir distancias se corresponde con nuestro concepto convencional de distancia, el que ya se utilizaba mucho antes del descubrimiento de la teoría de cuerdas. Como se vio en el capítulo 5,
este
concepto de distancia era el que hacía que encontráramos problemas insalvables con violentas ondulaciones cuánticas si las distancias a escala inferior a la longitud de Planck desempeñaban algún papel en los aspectos físicos. Vemos una vez más, desde esta perspectiva complementaria, que la teoría de cuerdas evita las distancias ultracortas. En el marco físico de la relatividad general y en el correspondiente marco matemático de la geometría riemanniana existe un único concepto de distancia, y éste puede adquirir valores arbitrariamente pequeños. En el marco físico de la teoría de cuerdas, y, en correspondencia, en el ámbito de la disciplina que está empezando a surgir y se llama geometría cuántica, existen dos conceptos de distancia. Haciendo un uso juicioso de ambas cosas, hallamos un concepto de distancia que encaja bien con nuestra intuición y, al mismo tiempo, con la relatividad general, cuando las escalas de las distancia son grandes, pero que difiere radicalmente de lo que prevén la intuición y la relatividad general cuando las distancias se hacen pequeñas. Concretamente, las distancias a escalas inferiores a la longitud de Planck son inaccesibles.

Dado que esta discusión es bastante sutil, volvamos a poner el énfasis en un aspecto central. Si quisiéramos despreciar la diferencia entre métodos «fáciles» y métodos «difíciles» para medir longitudes y, por ejemplo, continuar utilizando los modos no enrollados cuando
R
se reduce más allá de la distancia de Planck, podría parecer que llegaríamos a ser capaces de encontrar una distancia inferior a la longitud de Planck. Pero los párrafos anteriores nos informan de que esta palabra «distancia» se debe interpretar con cuidado, ya que pueden tener dos significados diferentes, de los cuales sólo uno se corresponde con nuestro concepto tradicional. Y en este caso, cuando
R
se reduce hasta longitudes inferiores a la de Planck, pero continuamos utilizando las cuerdas no enrolladas (incluso aunque ahora se hayan vuelto más pesadas que las cuerdas enrolladas), estamos empleando el método «difícil» para medir distancias y, por lo tanto, el significado de «distancia»
no
se corresponde con nuestro concepto estándar. No obstante, esta discusión es mucho más que una discusión semántica o incluso de conveniencia o de aspectos prácticos de la medición. Incluso si optamos por utilizar el concepto no estándar de distancia y, mediante él, describimos el radio como más corto que la longitud de Planck, las
propiedades físicas
con las que nos encontramos —como se explicó en anteriores secciones— serían idénticas a las de un universo en el que el radio, en el sentido convencional de distancia, es mayor que la longitud de Planck (como se atestigua, por ejemplo, mediante la correspondencia exacta entre las Tablas 10.1 y 10.2. Y es la física, no el lenguaje, lo que realmente importa.

Brandenberger, Vafa y otros físicos han utilizado estas ideas para sugerir que se reescriban las leyes de la cosmología de tal modo que el big bang y el posible big crunch no impliquen un universo de tamaño cero, sino uno que tenga la longitud de Planck en todas sus dimensiones. Es ciertamente una proposición muy atractiva para evitar los enigmas matemáticos, físicos y lógicos de un universo que surge de un punto infinitamente denso, o se colapsa en un punto así. Aunque es difícil conceptualmente imaginarse la totalidad del universo comprimida en una diminuta nuez del tamaño de Planck, pensar en todo el universo reducido a un punto sin tamaño alguno excede verdaderamente los límites de la imaginación. La cosmología de cuerdas, como veremos en el capítulo 14, es una disciplina que se encuentra más bien en pañales, pero que supone una gran promesa y es muy posible que en lo relativo al modelo estándar del big bang nos aporte una alternativa más fácil de digerir.

¿Cuán general es esta conclusión?

¿Y qué sucedería si las dimensiones espaciales no tuvieran forma circular? En ese caso, ¿seguirían siendo válidas estas formidables conclusiones relativas a la extensión espacial mínima en la teoría de cuerdas? Nadie lo sabe con seguridad. El aspecto esencial de las dimensiones circulares es que permiten considerar la posibilidad de cuerdas enrolladas. En la medida en que las dimensiones espaciales —dejando a un lado los detalles relativos a su forma— permiten que las cuerdas se enrollen en torno a ellas, la mayoría de las conclusiones que hemos obtenido deberían seguir siendo aplicables. Pero ¿qué pasaría si, por ejemplo, dos de las dimensiones estuvieran en la forma de una esfera? En este caso, las cuerdas no podrían quedarse «atrapadas» en una configuración enrollada, porque siempre podrían deslizarse «escapándose», como una banda de goma estirada puede saltar y desprenderse de una pelota. De todas maneras, ¿limita la teoría de cuerdas el tamaño hasta el cual pueden reducirse estas dimensiones?

Numerosas investigaciones parecen indicar que la respuesta depende de si se está reduciendo toda una dimensión espacial (como en los ejemplos de este capítulo) o (como veremos y explicaremos en los capítulos 11 y 13) de si se está colapsando un «trozo» aislado del espacio. La opinión general entre los expertos en teoría de cuerdas es que, independientemente de la forma, existe como límite un tamaño mínimo, como en el caso de las dimensiones circulares, cuando estamos reduciendo una dimensión espacial completa. Demostrar esta expectativa constituye un objetivo importante para las investigaciones posteriores, porque tiene un impacto directo en varios aspectos de la teoría de cuerdas, incluidas sus repercusiones en la cosmología.

Simetría especular

Mediante la relatividad general, Einstein estableció un vínculo entre la física de la gravedad y la geometría del espacio-tiempo. A primera vista, la teoría de cuerdas refuerza y amplía el vínculo entre la física y la geometría, ya que las propiedades de las cuerdas vibratorias —su masa y las cargas de fuerza que transportan— están determinadas en gran parte por las propiedades de la componente arrollada del espacio. Sin embargo, acabamos de ver que la geometría cuántica —la asociación de física y geometría en la teoría de cuerdas— tiene algunos giros sorprendentes. En la relatividad general, y en la geometría «convencional», un círculo de radio
R
es diferente de uno cuyo radio sea 1/R, pura y simplemente; no obstante, en la teoría de cuerdas son físicamente indistinguibles. Esto nos hace ser lo suficientemente audaces como para ir más adelante y preguntarnos si podrían existir formas geométricas del espacio que difirieran de un modo más drástico —no sólo en el tamaño global, sino posiblemente también en la forma— pero que fueran sin embargo físicamente indistinguibles en el marco de la teoría de cuerdas.

En 1988, Lance Dixon del
Stanford Linear Accelerator Center
(Centro de Aceleradores Lineales de Stanford) realizó una observación crucial al respecto, que posteriormente fue ampliada por Wolfgang Lerche del CERN, Vafa de Harvard y Nicholas Warner, entonces en el
Massachusetts Institute of Technology
. Apoyándose en argumentos estéticos basados en consideraciones relativas a la simetría, estos físicos formularon una audaz sugerencia en la que se planteaba la posibilidad de que dos formas diferentes de Calabi-Yau, elegidas para las dimensiones arrolladas adicionales dentro de la teoría de cuerdas, dieran lugar a propiedades físicas idénticas.

Para hacemos una idea de cómo esta posibilidad, bastante rebuscada, podría darse realmente, recordemos que el número de agujeros existentes en las dimensiones adicionales de Calabi-Yau determina el número de familias en las que aparecerán clasificadas las excitaciones de las cuerdas. Estos agujeros son análogos a los agujeros que podemos encontrar en un toro o en sus primos multiasa, como se ilustraba en la Figura 9.1. Una deficiencia de la representación bidimensional que podemos reproducir en el papel impreso es que no se puede mostrar que un espacio de Calabi-Yau de seis dimensiones puede tener agujeros de distintas dimensiones. Aunque tales agujeros son más difíciles de dibujar, es posible describirlos mediante unas matemáticas que se comprenden claramente. Un hecho clave es que el número de familias de partículas que surgen de las vibraciones de las cuerdas depende sólo del número total de agujeros, no del número de agujeros de cada dimensión en particular (ésta es la razón por la cual, por ejemplo, no nos preocupábamos de dibujar diferencias entre los distintos tipos de agujeros en la explicación que dimos en el capítulo 9). Imaginemos, pues, dos espacios de Calabi-Yau en los que el número de agujeros es diferente en las distintas dimensiones, pero en los que el número total de agujeros es el mismo. Dado que el número de agujeros en cada dimensión no es el mismo, los dos espacios de Calabi-Yau tienen formas diferentes. Pero, puesto que tienen el mismo número total de agujeros, cada uno da lugar a un universo en el que hay
el mismo número de familias
que en el otro. Esto, desde luego, no es más que una propiedad física. La coincidencia en
todas
las propiedades físicas es un requisito mucho más restrictivo, pero esto, al menos, da una idea de cómo la conjetura de Dixon-Lerche-Vafa-Warner podría ser cierta.

A finales de 1987, entré en el departamento de física de Harvard como becario posdoctoral y mi despacho estaba justo debajo del pasillo donde se encontraba el de Vafa. Dado que mi tesis doctoral se había centrado en las propiedades físicas y matemáticas de las dimensiones arrolladas de Calabi-Yau en la teoría de cuerdas, Vafa me mantenía puntualmente informado de los avances de su trabajo en esta área. Cuando, a finales de 1988, aterrizó en mi despacho y me habló sobre la conjetura a la que habían llegado Lerche, Warner y él mismo, me quedé intrigado, pero también escéptico. La intriga surgía de la constatación de que, si su conjetura era cierta, podría abrir un nuevo y amplio camino en la investigación sobre teoría de cuerdas; el escepticismo se derivaba de la constatación de que las conjeturas son una cosa, y las propiedades demostradas de una teoría son otra bastante distinta.

Durante los meses siguientes, reflexioné con frecuencia sobre esta conjetura y, francamente, llegué a estar medio convencido de que no era cierta. Sin embargo, para mi sorpresa, un proyecto de investigación que aparentemente no guardaba ninguna relación y que había emprendido en colaboración con Ronen Plesser, que entonces era un estudiante graduado de Harvard y ahora trabaja en la facultad del
Weizmann Institute
y en la Universidad de Duke, iba a hacerme cambiar de opinión radicalmente. Plesser y yo nos habíamos interesado por desarrollar métodos para, comenzando con una forma de Calabi-Yau y manipulándola matemáticamente, producir formas de Calabi-Yau que hasta entonces eran desconocidas. Estábamos especialmente atraídos por una técnica conocida como
orbifolding
(plegado orbicular), de la que habían sido pioneros Dixon, Jeffrey Harvey de la Universidad de Chicago, Vafa y Witten a mediados de la década de 1980. Dicho en pocas palabras, se trata de un procedimiento en el que diferentes puntos de una forma inicial de Calabi-Yau se unen entre sí según unas reglas matemáticas que garantizan la producción de una nueva forma de Calabi-Yau. Esto se ilustra esquemáticamente en la Figura 10.4.

Figura 10.4
El
orbifolding
, o plegado orbicular, es un procedimiento mediante el cual se produce una nueva forma de Calabi-Yau, uniendo entre sí distintos puntos de una forma inicial de Calabi-Yau.

La complejidad de las matemáticas en las que se basan estas manipulaciones de la Figura 10.4 es formidable, y por esta razón los expertos en teoría de cuerdas han investigado minuciosamente el procedimiento sólo en su aplicación a la más sencilla de las formas: las versiones en dimensiones superiores de las formas de rosquilla que se muestran en la Figura 9.1. Plesser y yo constatamos, sin embargo, que algunas de las bellas ideas novedosas de Doran Gepner, que entonces estaba en la Universidad de Princeton, podían proporcionar un marco teórico poderoso a la técnica del
orbifolding
, o plegado orbicular, para formas de Calabi-Yau plenamente desarrolladas, como la que se ve en la Figura 8.9.

Tras unos pocos meses de perseguir intensivamente esta idea, llegamos a una constatación sorprendente. Si uníamos unos grupos especiales de puntos exactamente de la manera correcta, la forma de Calabi-Yau que producíamos difería de aquella con la que habíamos comenzado de una manera sorprendente: el número de agujeros de dimensión
impar
de la nueva forma de Calabi-Yau era igual al número de agujeros de dimensión
par
de la forma original, y viceversa. En particular, esto significa que el número total de agujeros —y por consiguiente el número de familias de partículas— es
el mismo
en ambas formas, a pesar incluso de que el intercambio par-impar signifique que sus formas y sus estructuras geométricas fundamentales sean bastante diferentes.
[91]

Other books

The Colonel's Mistake by Dan Mayland
Sleigh of Hope by Wendy Lindstrom
Bad Seed by Alan Carter
Flying Changes by Gruen, Sara
Silvertip's Trap by Brand, Max
Las manzanas by Agatha Christie
The Forever Hero by L. E. Modesitt, Jr.
The Chinese Jars by William Gordon
Bloodline by F. Paul Wilson