El universo elegante (21 page)

Read El universo elegante Online

Authors: Brian Greene

Tags: #Divulgación Científica

BOOK: El universo elegante
6.02Mb size Format: txt, pdf, ePub

No obstante, en la realidad el mundo microscópico es mucho más sutil. Incluso cuando la intensidad de la fuente de luz de la Figura 4.8 se debilite cada vez más, llegando finalmente al momento en que fotones
individuales
se disparen
de uno en uno
contra la barrera —por ejemplo a una velocidad de un fotón cada diez segundos— la placa fotográfica resultante
todavía
seguirá teniendo el aspecto de la que se puede ver en la Figura 4.8: con tal de que esperemos el tiempo suficiente para que un gran número de estos paquetes aislados de luz atraviese las rendijas y cada uno de ellos quede grabado mediante un punto único allí donde choca con la placa fotográfica, estos puntos se reunirán para formar la imagen de un espectro de interferencias, la que se recoge en la Figura 4.8. Esto es asombroso. ¿Cómo pueden esas partículas fotón
individuales
que pasan secuencialmente a través de la pantalla de la pantalla y chocan por separado contra la placa fotográfica ponerse de acuerdo para producir las bandas claras y oscuras de las ondas que interfieren entre sí? El razonamiento convencional nos dice que todos y cada uno de los fotones atraviesan por la rendija de la izquierda o por la de la derecha, por lo que sería de esperar que se produjera el espectro de la Figura 4.6. Pero no sucede así.

Si a usted no le ha desconcertado este comportamiento de la naturaleza, esto quiere decir que, o bien lo había visto ya antes y está de vuelta de todo, o la descripción hecha hasta ahora no ha sido lo suficientemente vívida. Por si acaso ha sido lo último, vamos a explicarlo otra vez, pero de una manera algo diferente. Cerramos la rendija de la izquierda y disparamos los fotones uno a uno contra la barrera. Algunos la atraviesan, otros no. Los que lo hacen, crean una imagen en la placa fotográfica, punto a punto, que aparece como se muestra en la Figura 4.4. A continuación, realizamos el experimento otra vez con una nueva placa fotográfica, pero ahora abrimos las dos rendijas. Es natural pensar que el único cambio que esto va a producir es un aumento en el número de fotones que atraviesan la barrera y chocan contra la placa fotográfica, exponiendo la película a una mayor cantidad de luz total que en la primera prueba del experimento. Sin embargo, al examinar después la imagen producida, se ve que no sólo hay lugares que estaban oscuros en el primer experimento y ahora aparecen claros, como se podía esperar, sino que también hay lugares que en el primer experimento estaban claros y ahora aparecen oscuros, como en la Figura 4.8.
Aumentando
el número de fotones que chocan contra la placa fotográfica, lo que se ha conseguido es
disminuir
la claridad en ciertas zonas. De alguna manera, separadas en el tiempo, las partículas fotón individuales han podido anularse mutuamente. Consideremos lo absurdo de este resultado: algunos fotones que habrían atravesado la rendija de la derecha y chocado contra la película en una de las bandas oscuras de la Figura 4.8, no lo pueden hacer cuando está abierta la rendija de la
izquierda
(y es la razón por la que la banda correspondiente está ahora oscura). Pero ¿cómo es posible que un minúsculo haz de luz que atraviesa una rendija se vea afectado por el hecho de que la
otra
esté o no abierta? Como indicó Feynman, es tan extraño como si disparáramos con una ametralladora contra la pantalla y, cuando ambas rendijas están abiertas, unas balas disparadas de manera independiente y separada se anularan de algún modo mutuamente, dejando un espectro de posiciones intactas en la diana —posiciones que, sin embargo,
sí son
alcanzadas cuando sólo se abre una rendija de la barrera—.

Estos experimentos demuestran que las partículas de luz de Einstein son bastante diferentes de las de Newton. De algún modo, los fotones —aunque son partículas— tienen también unas características similares a las de las ondas. El hecho de que la energía de estas partículas esté determinada por una característica propia de las ondas —la frecuencia— es la primera pista de que se está produciendo una extraña unión. Pero el efecto fotoeléctrico y el experimento de la doble rendija hacen realmente que nos demos cuenta de cuál es el tema. El efecto fotoeléctrico muestra que la luz tiene propiedades de las partículas. El experimento de la doble rendija muestra que la luz posee las propiedades de interferencias de las ondas. Ambos juntos demuestran que la luz
tiene propiedades de las ondas y de las partículas al mismo tiempo
. El mundo microscópico exige que abandonemos la idea intuitiva de que una cosa es o bien una onda o una partícula, y aceptemos la posibilidad de que sea
ambas
cosas. Aquí es donde empieza a verse el sentido de la afirmación de Feynman de que «Nadie entiende la mecánica cuántica». Podemos proponer expresiones tales como «dualidad onda-partícula». Existe la posibilidad de traducir estas palabras en un formalismo matemático que describe los experimentos del mundo real con una asombrosa exactitud. Pero es extremadamente difícil comprender intuitivamente a un nivel profundo esta deslumbrante característica del mundo microscópico.

Las partículas de la materia son también ondas

En las primeras décadas del siglo XX, muchos de los físicos teóricos más importantes intentaron incansablemente desarrollar una explicación matemáticamente válida y físicamente coherente para estas características, hasta ahora desconocidas, de la realidad. Por ejemplo, bajo la dirección de Niels Bohr en Copenhague se realizaron unos avances sustanciales en la explicación de las propiedades de la luz emitida por átomos de hidrógeno incandescentes. Pero este y otros trabajos anteriores a mediados de la década de 1920 fueron más una unión improvisada de las ideas del siglo XIX con los conceptos cuánticos recién descubiertos, que un marco coherente para la comprensión del universo físico. Comparada con el marco claro y lógico de las leyes del movimiento de Newton o la teoría electromagnética de Maxwell, esta teoría cuántica, parcialmente desarrollada, se encontraba en un estado caótico.

En 1923, un joven aristócrata francés, el príncipe Louis de Broglie, añadió un nuevo elemento a este conflicto cuántico, un elemento que en breve serviría para anunciar la existencia de un marco matemático para la moderna mecánica cuántica y que le valió en 1929 el premio Nobel de física. Inspirado por una línea de razonamiento basada en la relatividad especial de Einstein, De Broglie sugirió que la dualidad onda-partícula no sólo se podía aplicar a la luz sino también a la materia. Dicho en pocas palabras, afirmaba en su razonamiento que la fórmula de Einstein
E = mc
2
relaciona la masa con la energía, que Planck y Einstein habían relacionado la energía con la frecuencia de las ondas y que, por consiguiente, combinando ambas cosas, la masa debería tener también una expresión en forma de onda. Después de abrirse paso meticulosamente a través de esta línea de pensamiento, sugirió que, del mismo modo que la luz es un fenómeno ondulatorio para el que la teoría cuántica demuestra que existe una descripción igualmente válida en términos de partículas, también un electrón —al que normalmente consideramos como una partícula— podría tener una descripción igualmente válida en términos de ondas. Einstein aceptó inmediatamente y con agrado la idea de De Broglie, puesto que era una consecuencia natural de sus propias contribuciones sobre la relatividad y los fotones. A pesar de esto, no hay nada que pueda sustituir a una prueba experimental. Dicha prueba llegaría pronto a través de los trabajos de Clinton Davisson y Lester Germer.

Hacia mediados de la década de 1920, Davisson y Germer, físicos experimentales de la empresa telefónica Bell, estaban estudiando cómo rebota un haz de electrones en un trozo de níquel. El único detalle que nos interesa aquí es que, en este experimento, los cristales de níquel actúan de una forma muy parecida a las dos rendijas del experimento reflejado en las figuras de la sección anterior —de hecho, es totalmente correcto considerar este experimento como el mismo que ilustraban las figuras, con la diferencia de que se utiliza un haz de electrones en vez de un haz de luz—. Adoptaremos este punto de vista. Cuando Davisson y Germer examinaron los electrones que atravesaban las dos rendijas de la barrera, haciendo que chocaran contra una pantalla fosforescente que grababa mediante un punto claro el lugar del impacto de cada electrón —en esencia, lo mismo que sucede dentro de un aparato de televisión— descubrieron algo importante. Apareció un espectro muy semejante al de la Figura 4.8. Por consiguiente, su experimento demostraba que los electrones presentan fenómenos de interferencia, un signo revelador de la existencia de
ondas
. En los puntos oscuros de la pantalla fluorescente, los electrones de alguna forma «se anulaban mutuamente», exactamente igual que los picos y los senos de las ondas en el agua. Aunque el haz de electrones disparados se «afinara» de tal modo que, por ejemplo, se emitiera sólo un electrón cada diez segundos, los electrones seguirían formando individualmente las bandas claras y oscuras, marcando un punto cada vez. De algún modo, al igual que los fotones, los electrones individuales «interfieren» unos con otros en el sentido de que estos electrones individuales, en el transcurso del tiempo, reconstruyen el espectro de interferencias asociado con las ondas. Nos vemos en la ineludible necesidad de concluir que el electrón incorpora una característica similar a la de las ondas, conjuntamente con su definición más habitual como partícula.

Aunque hemos explicado esto en el caso de los electrones, hay experimentos similares que llevan a la conclusión de que
toda
la materia tiene características semejantes a las de las ondas. Pero ¿cómo concuerda esto con nuestra experiencia de la materia en el mundo real, que la ve como algo sólido y firme, nunca como una onda? En cualquier caso, De Broglie desarrolló una fórmula para la longitud de onda de las ondas de la materia, en la que se demuestra que la longitud de onda es proporcional a la constante de Planck ħ. (Más concretamente, la longitud de onda viene dada por la división entre
ħ
y el momento del cuerpo material). Dado que
ħ
tiene un valor tan pequeño, las longitudes de onda resultantes son igualmente minúsculas comparadas con las dimensiones habituales del mundo que percibimos. Éste es el motivo por el cual el carácter de similitud con las ondas que presenta la materia sólo llega a ser directamente constatable en investigaciones microscópicas llevadas a cabo meticulosamente. Del mismo modo que el gran valor numérico de c, la velocidad de la luz, oculta en gran medida la auténtica naturaleza del espacio y del tiempo, el pequeño valor de
ħ
disimula el aspecto de onda de la materia en la experiencia cotidiana directa.

¿Ondas de qué?

El fenómeno de interferencia descubierto por Davisson y Germer hizo que fuera evidente de una manera tangible la naturaleza similar a la de las ondas que tienen los electrones. Pero ¿ondas de
qué
? Una de las primeras sugerencias al respecto fue la que hizo el físico austríaco Erwin Schrödinger, en el sentido de que las ondas eran electrones «partidos y dispersados». Esto expresaba en cierto modo algo del «sentido» que puede tener hablar de una onda electrónica, pero resultaba demasiado burdo. Cuando se parte algo, una parte está aquí y otra allí. Sin embargo, es imposible encontrar medio electrón o un tercio de electrón o cualquier otra fracción de un electrón. Esto hace difícil entender qué es realmente un electrón partido y dispersado. Como alternativa, en 1926, el físico alemán Max Born refinó agudamente la interpretación de la onda electrónica que había hecho Schrödinger, y es esta interpretación refinada —ampliada por Bohr y sus colegas— la que seguimos utilizando hoy en día. La sugerencia planteada por Born es uno de los aspectos más extraños de la teoría cuántica, pero, no obstante, está respaldada por una cantidad enorme de datos experimentales. Afirmó que una onda electrónica se debe interpretar desde el punto de vista de la
probabilidad
. Los lugares en que la magnitud (un poco más correcto es decir el cuadrado de la magnitud) de la onda es
grande
son aquellos lugares en que es más
probable
encontrar el electrón; los lugares en que la magnitud es pequeña son aquellos en que es
menos probable
encontrarlo. Un ejemplo de esto se ilustra en la Figura 4.9.

Figura 4.9
La onda asociada a un electrón alcanza la magnitud máxima allí donde es más probable encontrar al electrón, y se hace progresivamente menor en lugares donde es menos probable encontrarlo.

Esta idea es ciertamente peculiar. ¿Qué tiene que ver la probabilidad en la formulación de la física fundamental? Estamos acostumbrados a que la probabilidad aparezca en relación con las carreras de caballos, los lanzamientos de monedas y en la mesa de la ruleta, pero en estos casos lo que refleja es un conocimiento
incompleto
por nuestra parte. Si conociéramos
con exactitud
la velocidad de la rueda de la ruleta, el peso y la dureza de la bola blanca, su posición y velocidad cuando cae en la rueda, las especificaciones exactas del material del cual están hechos los cubículos de los números, etc., y si pudiéramos utilizar unos ordenadores lo suficientemente potentes como para realizar todos los cálculos, podríamos, según la física clásica, predecir con seguridad dónde irá a parar la bola. Los casinos confían en nuestra imposibilidad de conseguir toda esta información y de hacer todos los cálculos necesarios antes de realizar una apuesta. Pero vemos que la probabilidad, tal como se entiende en relación con la mesa de la ruleta, no refleja nada que sea fundamental con respecto al modo en que funciona el mundo. Por el contrario, la mecánica cuántica introduce el concepto de probabilidad en el universo a un nivel mucho más profundo. Según Born y más de medio siglo de sucesivos experimentos, la naturaleza ondulatoria de la materia implica que ésta se ha de explicar fundamentalmente de una manera probabilística. En el caso de objetos macroscópicos, como una taza de café o la rueda de una ruleta, la regla de De Broglie indica que el carácter ondulatorio es prácticamente imperceptible, y en la mayoría de los casos ordinarios se puede ignorar completamente la probabilidad asociada de que habla la mecánica cuántica. Pero a nivel microscópico sabemos que lo mejor que se puede hacer es decir que cada electrón tiene una probabilidad específica de encontrarse en un lugar determinado.

Other books

Absolute Monarchs by Norwich, John Julius
More Than Chains To Bind by Stevie Woods
Violets in February by Clare Revell
Deep Water by Tim Jeal
The Vampire Voss by Colleen Gleason
Magia para torpes by Fernando Fedriani
The Song Dog by James McClure