El hombre anumérico (14 page)

Read El hombre anumérico Online

Authors: John Allen Paulos

Tags: #Ensayo, Ciencia

BOOK: El hombre anumérico
9.19Mb size Format: txt, pdf, ePub

Muchos de los resultados sorprendentes citados en este libro son trucos psicológicos semejantes al anterior, que pueden arrastrar a un anumerismo transitorio incluso a la persona más numérica. En su fascinante obra
Judgement under Uncertainty
(«Discernimiento en la incertidumbre»), Tversky y Kahneman presentan una amplia variedad de casos parecidos de este anumerismo irracional, característico de muchas de nuestras decisiones más críticas. Plantean a una serie de personas la pregunta siguiente: Imagínese que es un general rodeado por una fuerza enemiga abrumadora que aniquilará su ejército de 600 hombres a menos que se decida por tomar una de las dos posibles vías de escape. Sus espías le dicen que si toma la primera salida salvará a 200 soldados, mientras que si se decide por la segunda hay una probabilidad de un tercio de que los 600 consigan salvarse y una probabilidad de 2/3 de que no lo consiga ninguno. ¿Qué camino elige usted?

La mayoría de la gente (tres de cada cuatro preguntados) elige el primer camino, pues de este modo es seguro que se salven 200 vidas, mientras que por el segundo camino hay una probabilidad de 2/3 de que haya más muertos.

De momento no hay nada que objetar. Pero ¿y este otro problema? Usted vuelve a ser el general que ha de decidir entre dos rutas de escape. Y le dicen que si elige la primera seguro que perderá 400 soldados, mientras que si toma la segunda hay una probabilidad de 1/3 de que ninguno muera y una probabilidad de 2/3 de que caigan todos. ¿Qué ruta elige usted?

La mayoría de la gente (cuatro de cada cinco preguntados) opta por la segunda ruta, justificando su elección en que la primera de ellas lleva a 400 muertes seguras, mientras que por la segunda hay una probabilidad de 1/3 de que todos se salven.

Las dos preguntas son idénticas, por supuesto, y el hecho de que las respuestas sean distintas depende del modo en que han sido planteadas: en términos de vidas salvadas o de vidas perdidas.

Y un ejemplo más de Tversky y Kahneman: Elija entre una ganancia segura de 30.000 dólares y una probabilidad del 80 por cien de ganar 40.000 y un 20 por cien de no ganar nada. La mayoría de la gente escogerá los 30.000 dólares, aunque la ganancia media esperada en la segunda alternativa es de 32.000 dólares (40.000 × 0,8). Pero ¿qué pasa cuando la elección se plantea entre una pérdida segura de 30.000 dólares y una probabilidad del 80% de perder 40.000 y un 20% de no perder nada? Aquí la mayoría de la gente se decantará por el riesgo de perder 40.000 dólares, para reservarse la posibilidad (20%) de no tener pérdidas, aunque la pérdida media esperada sea en este segundo caso de 32.000 dólares (40.000 × 0,8). Tversky y Kahneman concluyen que, ante la posibilidad de ganancias, las personas tienden a evitar los riesgos, mientras que prefieren correr riesgos para evitar pérdidas.

Naturalmente, no hace falta recurrir a ejemplos tan finos para subrayar que la forma en que se presenta una pregunta o una afirmación tiene un papel decisivo en la respuesta obtenida. Si se pregunta a un contribuyente qué pensaría de un aumento del 6% en los servicios públicos, probablemente lo encontraría aceptable. Pero su reacción sería probablemente muy distinta si se le planteara una subida global de 91 millones en los servicios públicos. Causa más impresión decir que uno está clasificado en el tercio central de su clase que decir que lo está en el trigésimo séptimo percentil (esto es, que es mejor que el 37% de sus compañeros).

La angustia matemática

Una causa de anumerismo más común que las ilusiones psicológicas es lo que Sheila Tobias llama angustia matemática. En
Overcoming Math Anxiety
(«Superando la angustia matemática») describe el bloqueo que tienen muchas personas (especialmente las mujeres) ante las matemáticas de cualquier tipo, incluso la aritmética. Las mismas personas que pueden entender los matices emocionales más sutiles de una conversación, las tramas más enrevesadas en literatura y los aspectos más intrincados de un asunto legal, parecen incapaces de captar los elementos básicos de una demostración matemática.

No parecen tener ningún marco de referencia matemático ni unos conocimientos fundamentales sobre los que construir. Tienen miedo. Un miedo que les han metido maestros autoritarios y a veces sexistas, y otras personas que probablemente padecen también a su vez de angustia matemática. Los infames problemas de términos les aterrorizan, y están convencidos de que son estúpidos. Tienen la sensación de que hay unas mentes bien dotadas para las matemáticas y otras que no lo están, y que, mientras las primeras siempre llegan enseguida a la respuesta correcta, las otras son irremediablemente impotentes.

No ha de sorprendernos pues que estos sentimientos constituyan un obstáculo formidable para el numerismo. Sin embargo, algo se puede hacer por aquellos que los padecen. Una técnica muy simple y que da unos resultados sorprendentes consiste en explicar claramente el problema a una tercera persona. Si el supuesto alumno escucha esta explicación, puede pensar sobre el problema un rato suficientemente largo para darse cuenta de que, pensando un poquito más, acabaría llegando a algunos resultados. Otras posibles técnicas son: usar números más pequeños, estudiar problemas más sencillos relacionados con el que nos ocupa; recoger información relacionada con el problema; recorrer el camino inverso a partir de la solución; hacer dibujos y pintar diagramas; comparar el problema o partes del mismo con problemas que ya se comprenden bien y, sobre todo, estudiar el mayor número posible de problemas y ejemplos. El tópico de que se aprende a leer leyendo y a escribir escribiendo vale también para aprender a resolver problemas matemáticos (y hasta para aprender a hacer demostraciones matemáticas).

Al escribir este libro he llegado a entender un modo en el que yo, y probablemente los matemáticos en general, podemos estar contribuyendo sin querer al anumerismo. Me resulta difícil escribir largas parrafadas sobre cualquier cosa. Ya sea por mi formación matemática o por mi temperamento innato, tiendo a destilar los puntos cruciales y a no entretenerme (quisiera decir «perder el tiempo») en temas o contextos colaterales, ni en los detalles biográficos. El resultado de ello es, me parece, una exposición nítida, que sin embargo puede ser intimidatoria para aquellas personas que preferirían un enfoque más pausado. La solución sería que personas con formación muy variada escribieran sobre matemáticas. Como se ha dicho ya, las matemáticas son demasiado importantes para dejárselas a los matemáticos.

Otro fenómeno, distinto de la angustia matemática y mucho más difícil de tratar, es el letargo intelectual extremado que afecta a un número pequeño, aunque cada vez mayor, de estudiantes, que parecen tan faltos de disciplina mental o de motivación que no les entra nada. Los caracteres obsesivo-compulsivos son susceptibles de desentumecerse y las personas que padecen de angustia matemática pueden aprender modos de aquietar sus miedos, pero ¿qué se puede hacer con los estudiantes que no se esfuerzan en concentrar ni una pizca de sus energías en cuestiones intelectuales? A veces les reconvienes: «La respuesta no es X sino Y. Te has olvidado de tener en cuenta esto o aquello». Y la única respuesta es una mirada vaga o un «Ah, sí» sin ningún interés. Sus problemas son de un orden más serio que la angustia matemática.

El romanticismo mal entendido

Me refiero a un romanticismo mal entendido acerca de la naturaleza de las matemáticas, alimentado por un entorno intelectual que acepta, e incluso estimula, una mala formación matemática y una aversión psicológica por el tema, y que constituye la base de buena parte del anumerismo reinante. El desprecio que Rousseau sentía por los ingleses, a los que tildaba de «nación de tenderos», persiste hoy bajo la forma de creencia de que el interés por los números y los detalles nos impedirán preocuparnos por los grandes temas, la grandiosidad de la naturaleza. A menudo se piensa que la matemática es algo mecánico, el trabajo de unos técnicos de baja categoría que no nos va a enseñar nada que no podamos saber por otra vía. O también, otras veces se dota a las matemáticas de un poder coactivo capaz, en cierto modo, de determinar nuestro futuro. Actitudes como éstas predisponen ciertamente al anumerismo. Examinemos algunas de ellas.

Se cree que la matemática es fría porque trata de cosas abstractas, que no son de carne y hueso. Y en cierto modo es verdad, naturalmente. Hasta Bertrand Russell calificó de «fría y austera» la belleza de la matemática pura, y es precisamente esta belleza fría y austera el atractivo principal que el tema tiene inicialmente para los matemáticos, pues la mayoría de ellos son esencialmente platonistas y creen que los objetos matemáticos existen en determinado plano abstracto e ideal.

Sin embargo, la matemática pura sólo es una parte de las matemáticas. Casi tan importante como ella es la interacción entre esas formas platónicos ideales (o lo que sea) y sus posibles interpretaciones en el mundo real. Y tomada en este sentido amplio, la matemática no es nada fría. Recordemos que una verdad matemática tan simple como «1 + 1 = 2» puede ser mal aplicada si se hace sin pensar. Si añadimos una taza de palomitas de maíz a una taza de agua, el resultado no es dos tazas de palomitas de maíz remojadas. Tanto en los casos triviales como en los más difíciles, la aplicación de las matemáticas puede ser un asunto delicado, que precisa de tanto entusiasmo y matizaciones como cualquier otra empresa.

Hasta en sus dominios más puros y fríos, la actividad matemática es a menudo muy apasionada. Como los demás científicos, los matemáticos están motivados por un complejo de emociones entre las que hay dosis saludables de envidia, arrogancia y competitividad. Los matemáticos que investigan abordan sus problemas con una intensidad y una disciplina que parecen tener mucho que ver con la pureza de su investigación. La matemática está traspasada por una intensa vena romántica que se manifiesta muy claramente en sus dominios más fundamentales, la teoría de los números y la lógica. Este romanticismo se remonta por lo menos hasta Pitágoras, que creía que el secreto de la comprensión del mundo radicaba en la comprensión del número; encontró luego su expresión en la numerología y la cábala de la Edad Media, y persiste (ahora ya libre de superstición) en el platonismo del lógico moderno Kurt Gödel y otros. La existencia de esta tendencia romántica constituye por lo menos una pequeña porción del carácter emocional de la mayoría de matemáticos, y quizá resulte sorprendente para aquellos que piensan que los matemáticos son fríos racionalistas.

Otra impresión errónea bastante común es que los números despersonalizan o que, de un modo u otro, disminuyen la individualidad. Naturalmente, hay algo de legítimo en esa preocupación por lo que pueda implicar la reducción de fenómenos complejos a simples escalas numéricas o a la estadística. Ni los términos matemáticos vistosos, ni las grandes cantidades de correlaciones estadísticas, ni los largos listados de ordenador bastan por sí solos para entender una situación, a pesar de lo que pretendan los sociólogos. Reducir la complejidad de la inteligencia o la economía a una escala numérica, ya sea ésta el CI o el PNB, es una miopía, en el mejor de los casos, y muchas veces, simplemente ridículo.

Una vez aclarado esto, la objeción a que, en determinadas situaciones (seguridad social, tarjetas de crédito, etc.), le identifiquen a uno con un simple número parece una tontería. En tales contextos un número refuerza la individualidad; no hay dos personas con el mismo número en la tarjeta de crédito, por ejemplo, mientras que muchas tienen nombres iguales, rasgos de personalidad parecidos o perfiles socioeconómicos semejantes. (Yo mismo uso mi segundo nombre John Allen Paulos para que la gente no me confunda con el Papa.)

Siempre me han resultado divertidos los anuncios de bancos que pregonan su servicio personalizado, el cual se reduce a un cajero mal preparado, y peor pagado, que saluda con un amable «Buenos días» y a renglón seguido se arma un lío con la transacción que uno quiere hacer. Prefiero ir a una máquina que me reconoce por un número secreto y que funciona gracias a unos programas elaborados por un equipo de informáticos que ha trabajado laboriosamente durante varios meses.

Un inconveniente que en mi opinión tienen los números de identificación es su longitud excesiva. Si aplicamos la regla del producto podemos ver que un número de nueve dígitos o una secuencia de seis letras es más que suficiente, para distinguir a cada persona del país (10
9
son mil millones, mientras que 26
6
es más de 300 millones). ¿Por qué los grandes almacenes o las compañías suburbanas de suministro de agua asignan números de cuenta con veinte símbolos o más?

Al escribir sobre los números y la individualidad me vienen a la memoria esas compañías que ponen tu nombre a una estrella a cambio de una cuota de 35 dólares. Para envolverse en una especie de manto de oficialidad, los nombres quedan escritos en libros que se registran en la Biblioteca del Congreso. Esas compañías suelen anunciarse generalmente cuando se avecina el día de San Valentín y, a juzgar por su longevidad, el negocio ha de ser bastante bueno. Se me ocurrió una idea similar, e igualmente tonta, consistente en asociar «oficialmente» un número a todo aquel que pagara una cuota de 35 dólares. Los suscriptores recibirían un certificado, y se registraría un libro en la Biblioteca del Congreso con sus nombres y los correspondientes números cósmicos. Podría incluso haber una escala móvil, donde los números perfectos tendrían mucha demanda, y los números primos irían más buscados que los números compuestos no-perfectos, etc. Podría hacerme rico vendiendo números.

Otra idea errónea que la gente se forma de la matemática es que implica una restricción a la libertad humana, y que en cierto modo se opone a ella. Si aceptan ciertas premisas y se demuestra que de ellas se desprenden ciertas conclusiones desagradables, asocian lo desagradable de éstas con el vehículo de su expresión.

En este sentido tan amplio, la matemática es en efecto restrictiva, al igual que lo es la realidad misma, pero no tiene una fuerza coactiva independiente. Si uno acepta las premisas y las definiciones, ha de aceptar lo que se desprenda de ellas, pero a menudo se pueden desechar algunas premisas, afinar mejor las definiciones o elegir un enfoque matemático distinto.

En este otro aspecto, la matemática es todo lo contrario de restrictiva; aumenta la libertad y está al servicio de cualquiera que tenga ganas de usarla.

Other books

Transformation: Zombie Crusade VI by Vohs, J.W., Vohs, Sandra
Curve Ball by Charlotte Stein
Have You Any Rogues? by Elizabeth Boyle
Winning the Legend by B. Kristin McMichael
My Last Confession by Helen FitzGerald
Strike Back by Ryan, Chris
Wish Upon a Star by Sumsion, Sabrina
Dimitri's Moon by Aliyah Burke