Read Bad Pharma: How Drug Companies Mislead Doctors and Harm Patients Online
Authors: Ben Goldacre
If you’re ever in any doubt about whether the stories in this book make me angry – and I promise you, whatever happens, I will keep to the data, and strive to give a fair picture of everything we know – you need only look at this story. I did everything a doctor is supposed to do. I read all the papers, I critically appraised them, I understood them, I discussed them with the patient, and we made a decision together, based on the evidence. In the published data, reboxetine was a safe and effective drug. In reality, it was no better than a sugar pill, and worse, it does more harm than good. As a doctor I did something which, on the balance of all the evidence, harmed my patient, simply because unflattering data was left unpublished.
If you find that amazing, or outrageous, your journey is just beginning. Because nobody broke any law in that situation, reboxetine is still on the market, and the system that allowed all this to happen is still in play, for all drugs, in all countries in the world. Negative data goes missing, for all treatments, in all areas of science. The regulators and professional bodies we would reasonably expect to stamp out such practices have failed us.
In a few pages, we will walk through the literature that demonstrates all of this beyond any doubt, showing that ‘publication bias’ – the process whereby negative results go unpublished – is endemic throughout the whole of medicine and academia; and that regulators have failed to do anything about it, despite decades of data showing the size of the problem. But before we get to that research, I need you to feel its implications, so we need to think about why missing data matters.
Evidence is the only way we can possibly know if something works – or doesn’t work – in medicine. We proceed by testing things, as cautiously as we can, in head-to-head trials, and gathering together
all
of the evidence. This last step is crucial: if I withhold half the data from you, it’s very easy for me to convince you of something that isn’t true. If I toss a coin a hundred times, for example, but only tell you about the results when it lands heads-up, I can convince you that this is a two-headed coin. But that doesn’t mean I really do have a two-headed coin: it means I’m misleading you, and you’re a fool for letting me get away with it. This is exactly the situation we tolerate in medicine, and always have. Researchers are free to do as many trials as they wish, and then choose which ones to publish.
The repercussions of this go way beyond simply misleading doctors about the benefits and harms of interventions for patients, and way beyond trials. Medical research isn’t an abstract academic pursuit: it’s about people, so every time we fail to publish a piece of research we expose real, living people to unnecessary, avoidable suffering.
TGN1412
In March 2006, six volunteers arrived at a London hospital to take place in a trial. It was the first time a new drug called TGN1412 had ever been given to humans, and they were paid £2,000 each.
7
Within an hour these six men developed headaches, muscle aches, and a feeling of unease. Then things got worse: high temperatures, restlessness, periods of forgetting who and where they were. Soon they were shivering, flushed, their pulses racing, their blood pressure falling. Then, a cliff: one went into respiratory failure, the oxygen levels in his blood falling rapidly as his lungs filled with fluid. Nobody knew why. Another dropped his blood pressure to just 65/40, stopped breathing properly, and was rushed to an intensive care unit, knocked out, intubated, mechanically ventilated. Within a day all six were disastrously unwell: fluid on their lungs, struggling to breathe, their kidneys failing, their blood clotting uncontrollably throughout their bodies, and their white blood cells disappearing. Doctors threw everything they could at them: steroids, anti-histamines, immune-system receptor blockers. All six were ventilated on intensive care. They stopped producing urine; they were all put on dialysis; their blood was replaced, first slowly, then rapidly; they needed plasma, red cells, platelets. The fevers continued. One developed pneumonia. And then the blood stopped getting to their peripheries. Their fingers and toes went flushed, then brown, then black, and then began to rot and die. With heroic effort, all escaped, at least, with their lives.
The Department of Health convened an Expert Scientific Group to try to understand what had happened, and from this two concerns were raised.
8
Firstly: can we stop things like this from happening again? It’s plainly foolish, for example, to give a new experimental treatment to all six participants in a ‘first-inman’ trial at the same time, if that treatment is a completely unknown quantity. New drugs should be given to participants in a staggered process, slowly, over a day. This idea received considerable attention from regulators and the media.
Less noted was a second concern: could we have foreseen this disaster? TGN1412 is a molecule that attaches to a receptor called CD28 on the white blood cells of the immune system. It was a new and experimental treatment, and it interfered with the immune system in ways that are poorly understood, and hard to model in animals (unlike, say, blood pressure, because immune systems are very variable between different species). But as the final report found, there was experience with a similar intervention: it had simply not been published. One researcher presented the inquiry with unpublished data on a study he had conducted in a single human subject a full ten years earlier, using an antibody that attached to the CD3, CD2 and CD28 receptors. The effects of this antibody had parallels with those of TGN1412, and the subject on whom it was tested had become unwell. But nobody could possibly have known that, because these results were never shared with the scientific community. They sat unpublished, unknown, when they could have helped save six men from a terrifying, destructive, avoidable ordeal.
That original researcher could not foresee the specific harm he contributed to, and it’s hard to blame him as an individual, because he operated in an academic culture where leaving data unpublished was regarded as completely normal. The same culture exists today. The final report on TGN1412 concluded that sharing the results of all first-in-man studies was essential: they should be published, every last one, as a matter of routine. But phase 1 trial results weren’t published then, and they’re still not published now. In 2009, for the first time, a study was published looking specifically at how many of these first-in-man trials get published, and how many remain hidden.
9
They took all such trials approved by one ethics committee over a year. After four years, nine out of ten remained published; after eight years, four out of five were still unpublished.
In medicine, as we shall see time and again, research is not abstract: it relates directly to life, death, suffering and pain. With every one of these unpublished studies we are potentially exposed, quite unnecessarily, to another TGN1412. Even a huge international news story, with horrific images of young men brandishing blackened feet and hands from hospital beds, wasn’t enough to get movement, because the issue of missing data is too complicated to fit in one sentence.
When we don’t share the results of basic research, such as a small first-in-man study, we expose people to unnecessary risks in the future. Was this an extreme case? Is the problem limited to early, experimental, new drugs, in small groups of trial participants? No.
In the 1980s, doctors began giving anti-arrhythmic drugs to all patients who’d had a heart attack. This practice made perfect sense on paper: we knew that anti-arrhythmic drugs helped prevent abnormal heart rhythms; we also knew that people who’ve had a heart attack are quite likely to have abnormal heart rhythms; we also knew that often these went unnoticed, undiagnosed and untreated. Giving anti-arrhythmic drugs to everyone who’d had a heart attack was a simple, sensible, preventive measure.
Unfortunately, it turned out that we were wrong. This prescribing practice, with the best of intentions, on the best of principles, actually killed people. And because heart attacks are very common, it killed them in very large numbers: well over 100,000 people died unnecessarily before it was realised that the fine balance between benefit and risk was completely different for patients without a proven abnormal heart rhythm.
Could anyone have predicted this? Sadly, yes, they could have. A trial in 1980 tested a new anti-arrhythmic drug, lorcainide, in a small number of men who’d had a heart attack – less than a hundred – to see if it was any use. Nine out of forty-eight men on lorcainide died, compared with one out of forty-seven on placebo. The drug was early in its development cycle, and not long after this study it was dropped for commercial reasons. Because it wasn’t on the market, nobody even thought to publish the trial. The researchers assumed it was an idiosyncrasy of their molecule, and gave it no further thought. If they had published, we would have been much more cautious about trying other anti-arrhythmic drugs on people with heart attacks, and the phenomenal death toll – over 100,000 people in their graves prematurely – might have been stopped sooner. More than a decade later, the researchers finally did publish their results, with a
mea culpa
, recognising the harm they had done by not sharing them earlier:
When we carried out our study in 1980, we thought that the increased death rate that occurred in the lorcainide group was an effect of chance. The development of lorcainide was abandoned for commercial reasons, and this study was therefore never published; it is now a good example of ‘publication bias’. The results described here might have provided an early warning of trouble ahead.
10
As we shall shortly see, this problem of unpublished data is widespread throughout medicine, and indeed the whole of academia, even though the scale of the problem, and the harm it causes, have been documented beyond any doubt. We will see stories on basic cancer research, Tamiflu, cholesterol block-busters, obesity drugs, antidepressants and more, with evidence that goes from the dawn of medicine to the present day, and data that is still being withheld, right now, as I write, on widely used drugs which many of you reading this book will have taken this morning. We will also see how regulators and academic bodies have repeatedly failed to address the problem.
Because researchers are free to bury any result they please, patients are exposed to harm on a staggering scale throughout the whole of medicine, from research to practice. Doctors can have no idea about the true effects of the treatments they give. Does this drug really work best, or have I simply been deprived of half the data? Nobody can tell. Is this expensive drug worth the money, or have the data simply been massaged? No one can tell. Will this drug kill patients? Is there any evidence that it’s dangerous? No one can tell.
This is a bizarre situation to arise in medicine, a discipline where everything is supposed to be based on evidence, and where everyday practice is bound up in medico-legal anxiety. In one of the most regulated corners of human conduct we’ve taken our eyes off the ball, and allowed the evidence driving practice to be polluted and distorted. It seems unimaginable. We will now see how deep this problem goes.
Why we summarise data
Missing data has been studied extensively in medicine. But before I lay out that evidence, we need to understand exactly why it matters, from a scientific perspective. And for that we need to understand systematic reviews and ‘meta-analysis’. Between them, these are two of the most powerful ideas in modern medicine. They are incredibly simple, but they were invented shockingly late.
When we want to find out if something works or not, we do a trial. This is a very simple process, and the first recorded attempt at some kind of trial was in the Bible (Daniel 1:12, if you’re interested). Firstly, you need an unanswered question: for example, ‘Does giving steroids to a woman delivering a premature baby increase the chances of that baby surviving?’ Then you find some relevant participants, in this case, mothers about to deliver a premature baby. You’ll need a reasonable number of them, let’s say two hundred for this trial. Then you divide them into two groups at random, give the mothers in one group the current best treatment (whatever that is in your town), while the mothers in the other group get current best treatment plus some steroids. Finally, when all two hundred women have gone through your trial, you count up how many babies survived in each group.
This is a real-world question, and lots of trials were done on this topic, starting from 1972 onwards: two trials showed that steroids saved lives, but five showed no significant benefit. Now, you will often hear that doctors disagree when the evidence is mixed, and this is exactly that kind of situation. A doctor with a strong pre-existing belief that steroids work – perhaps preoccupied with some theoretical molecular mechanism, by which the drug might do something useful in the body – could come along and say: ‘Look at these two positive trials! Of course we must give steroids!’ A doctor with a strong prior intuition that steroids were rubbish might point at the five negative trials and say: ‘Overall the evidence shows no benefit. Why take a risk?’
Up until very recently, this was basically how medicine progressed. People would write long, languorous review articles – essays surveying the literature – in which they would cite the trial data they’d come across in a completely unsystematic fashion, often reflecting their own prejudices and values. Then, in the 1980s, people began to do something called a ‘systematic review’. This is a clear, systematic survey of the literature, with the intention of getting all the trial data you can possibly find on one topic, without being biased towards any particular set of findings. In a systematic review, you describe exactly how you looked for data: which databases you searched, which search engines and indexes you used, even what words you searched for. You pre-specify the kinds of studies that can be included in your review, and then you present everything you’ve found, including the papers you rejected, with an explanation of why. By doing this, you ensure that your methods are fully transparent, replicable and open to criticism, providing the reader with a clear and complete picture of the evidence. It may sound like a simple idea, but systematic reviews are extremely rare outside clinical medicine, and are quietly one of the most important and transgressive ideas of the past forty years.