Read Who Built the Moon? Online
Authors: Christopher Knight,Alan Butler
In the summer of 1958 the Western world was rocking and rolling to Elvis Presley’s ‘Hound Dog’, ‘Heartbreak Hotel’ and ‘Jailhouse Rock’ whilst the politicians of the ex-Russian territory of Alaska were lobbying to be accepted as the 49
th
State of the Union. In Washington, however, the US government’s main focus was on something much more important – a new idea that was going to be a grand solution to a double-edged problem.
Their first concern was Sputnik. These high-profile launches had very effectively announced to the world that Soviet scientists were smarter than American ones and it was also implicit that the ‘bad guys’ had the technology to deliver heavy nuclear weapons around the planet. America had fallen well behind in the race for definitive military advantage and the idea of a ‘first strike’ by the Soviets suddenly seemed possible and, for some, even probable given the USA’s current inability to respond in kind.
The second problem was one of internal power blocks. The US Army and Navy were politically untouchable and each had separate rocketry programmes causing duplication of effort that was dramatically slowing down the rate of overall progress. In the light of all this, Congress decided to side step military fiefdoms and set up a new organization to oversee and coordinate American space research.
Accordingly the National Aeronautics and Space Administration (NASA) was formed on October 1
st
1958 and the idea of putting a man into space was immediately outlined, and given the title ‘Project Mercury’. But it was a race they were destined to lose because on April 12
th
1961 cosmonaut Yuri Gagarin became the first human to travel into space.
Gagarin’s 108-minute voyage took him once around the planet, although he was not allowed to operate the controls because the effects of weightlessness had only been tested on dogs, and scientists were concerned that he may not be able to function properly. Consequently, ground crews controlled the mission with an override key provided just in case of an emergency.
NASA responded quickly by sending the astronaut Alan Shepherd on a ballistic trajectory sub-orbital flight to an altitude of 116 miles, returning to Earth at a landing point just 302 miles down the Atlantic Missile Range. America’s first manned space flight was a fifteen minute sky rocket event that was nowhere near the same league as Yuri Gagarin’s 25,000 mile, high-speed voyage into Earth’s orbit.
The race to get a man into space had been won by the USSR but there was a second, more ambitious competition running in parallel. Reaching for the Moon!
At first these were half-hearted attempts to get some metal, any bit of metal, onto the Moon. It had started with the first Pioneer rocket launched in 1958 by the United States – which lasted a full seventy-seven seconds before disintegrating into a giant fireball. A few months later the USSR launched Luna I, which performed beautifully but unfortunately missed the Moon and headed into solar orbit. In September 1959 the USSR managed to hit the bull’s-eye when Luna 2 became the first craft to land on another celestial body, slamming into the Moon’s surface just east of the Sea of Serenity. Before the impact Luna 2 was able to report back that there was something very odd about the Moon – it did not seem to have a magnetic field.
The next Soviet craft, Luna 3, made a great stride forward by swinging around the Moon, taking photographs of the ‘dark’ side before heading back to Earth in April 1960. The Americans meanwhile had failure after failure.
Nikita Khrushchev was pleased with the way that his nation was winning the space race and when Yuri Gagarin had orbited the Earth his propaganda machine went into overdrive to ensure that the world knew how superior his space engineers were. America’s newly elected President was no slouch when it came to inspiring the public and John F Kennedy decided to take control of the situation by announcing that the real battle was to put men on the Moon. Despite a history of underperformance in space technology, he rather bravely publicly pledged to land a man on the Moon before the end of the 1960s.
Many American Ranger and Soviet Luna spacecraft headed for the Moon during the decade but a large number missed and others crashed onto the lunar surface either by accident or sometimes by design. But it was the USSR, once again, that made the next breakthrough when Luna 9 became the first spacecraft to make a controlled landing onto the surface of another celestial body on February 3
rd
1966.
A significant part of the problem was the weird nature of the Moon’s mass that was not at all what was expected. Instead of a generally constant gravitational field such as the Earth exhibits across its surface, the Moon is an inconsistent, lumpy ball that has huge variations in gravity from region to region.
As we have discussed, a pendulum swings with fairly regular precision on the Earth, with only quite small variations in swing rate because of the bulging of the planet at the equator. This is due to the fact that a person standing at sea level at the equator is a little further away from Earth’s dense core than someone closer to one of the poles. Using a pendulum on the Moon would not produce any meaningful result because of what are known as ‘mascons’.
The term mascon is an abbreviation for ‘mass concentration’ – regions of the Moon that have hugely dense material below the surface, rather than in the core as everyone would naturally expect. These mascons made it very difficult for spacecraft to orbit close to the Moon without continual adjustments to compensate for the variations in gravity. Some observers believe that it was this gravitational minefield that caused all of the problems for the early probes that were directed on the basis of a homogeneous gravity.
The existence of mascons was discovered after Lunar Orbiter 1 went into orbit around the Moon on August 14
th
1966 and sent back high-quality images of over two million square miles of lunar surface, including the first detailed images of potential landing sites for the planned Apollo missions.
This new discovery of gravitational ‘hotspots’ on the Moon had an impact on a man who is arguably the greatest science fiction writer of all time and an acknowledged inspiration to NASA. Arthur C Clarke combined forces with film director Stanley Kubrick to write and shoot the most realistic space adventure ever. When their film
2001: A Space Odyssey
premiered in April 1968, it stunned audiences across the world with its beautifully produced vision of the future.
The plot of the film starts millions of years ago when our ancestors were still apelike creatures without speech or tools. There is a visitation from some undisclosed power in the form of a jet-black and perfectly finished rectangular monolith that stands upright. When touched by the probing fingers of the gang of primates at dawn the monolith somehow remaps their brains to begin a process that will take these proto-humans on the evolutionary road to intellectual development. As the camera pans up the length of the monolith the Sun and the Moon appear directly overhead as though an eclipse is about to occur. The scene then leaps forward to the beginning of the twenty-first century when a powerful magnetic anomaly is discovered just below the surface of the Moon in the Tycho crater and excavations are carried out to discover what is causing the effect. A black monolith, some four metres tall is uncovered and a team of experts sets out from Earth to investigate the clearly artificial phenomenon.
The team travel to the Tycho crater as the Sun rises and wearing spacesuits they walk down a ramp into the pit where the monolith stands just a few metres below the surface. Like the man-apes millions of years earlier the team leader, Dr Floyd, is mesmerized by this alien structure and he touches it with his gloved hand. A moment later a ray of sunlight comes over the edge of the pit and strikes the monolith, signalling the end of the dark lunar night that lasts for two Earth weeks. This time, as we look up the monolith we see the Sun and Earth hovering directly above and almost touching. Then suddenly, the object transmits a signal in the direction of one of the moons of Jupiter (in Clarke’s novel version this was changed to Iapetus, one of Saturn’s moons).
The ingenious idea that Clarke put forward here was astonishingly close to the real-world discovery of the lunar mascons that had been made around the time he was writing. The similarity between Clarke’s magnetic anomaly and the gravitational anomalies are obvious. We wonder whether Clarke was aware of the newly discovered mascons and whether that gave him the idea of a kind of trip switch placed on the Moon in the extreme past by some alien intelligence to trigger a signal that told them that creatures from the Earth had become smart enough to reach the Moon and spot a serious abnormality.
What a brilliant concept!
If an alien intelligence had indeed been responsible for the evolution of humans from ape to technologist, then what better way would there be of setting up an alarm system to confirm our intellectual ‘arrival’.
At the time that Clarke and Kubrick’s film was first capturing the imagination of a generation, no human had yet reached the Moon. But the following year, with less than six months to go to the late President Kennedy’s deadline, Commander Neil Armstrong stepped out onto the surface of the Moon on July 20
th
1969 with his famous but slightly misdelivered line:
‘That’s one small step for man, one giant leap for mankind.’
At this point we must mention that there are some people who seriously believe that NASA faked the Moon landings on a film set just like the one used by Stanley Kubrick. The evidence they produce looks reasonable at a casual glance; assuming you know nothing at all about photography or the facts relating to lunar conditions. These ideas suddenly leaped into the public imagination on February 15
th
2001 when Fox television in the USA broadcast a programme called
Conspiracy Theory: Did We Land on the Moon?
The thrust of the show was that NASA technology in the 1960s was simply too primitive to have taken men to the Moon, and because they were so close to President Kennedy’s politically important deadline they fabricated the entire mission in a movie studio.
To them the fraud was obvious. They point out that shots of the astronauts on the lunar surface show a completely black sky without any stars. Had this proved too difficult for the set constructors to fake they ask? The answer is actually very simple. As any proficient photographer knows, it is difficult to capture something extremely bright and something else extremely dim in the same shot. This means that for the stars to be visible, the lunar surface and the astronauts would have been burned out into a white blaze; the emulsion on a piece of film does not have enough dynamic range to capture both ends of the brightness scale simultaneously.
Amongst the other pieces of ‘evidence’ was the issue of the flapping flag. The NASA set designers were apparently so dumb that they allowed a stiff breeze to waft through the studio causing the flag that the astronauts planted to wave about. As the Moon has no atmosphere this is said to prove that it was filmed on Earth.
The fact is, the flag waved about so much precisely because there was no atmosphere. When astronauts planted the flagpole they rotated it back and forth to ensure that it penetrated the lunar surface causing the flag to wobble from side to side on its supporting frame. On Earth the presence of an atmosphere quickly dampens this motion as the surrounding air absorbs the energy from the moving flag, whereas in an airless environment the flag has nothing to dampen its motion. It could therefore keep going for many hours before the energy finally dissipated.
So anyone who has seriously looked into the case for and against the actuality of the Moon landings cannot fail to reject every one of the strands of evidence put forward by the conspiracy theorists. We do believe that conspiracies happen, because people will conspire together for all kinds of reasons – but the Apollo 11 mission was certainly not one of them.
We can be certain that twelve astronauts walked on the Moon between 1969 and 1972 and that they brought back 842 pounds of the Moon in the form of rocks, core samples, pebbles, sand and fine dust from six different exploration sites.
The last human being to walk on the Moon was Eugene Cernan in December 1972 and the information gathered over those three years, and later by Russian unmanned craft, has greatly increased our knowledge of the Moon. But it has also posed as many questions as it has answered.
It was expected that the samples of Moon rock would prove one of the existing theories about the Earth–Moon system. If the rock from the samples had been substantially different from rocks on Earth, then it was likely that the Moon had originated in some other part of the solar system and had been captured by the young Earth. If the Moon was identical in every way to the Earth, then it was likely they had both come into existence together and at the same time. However, it soon became apparent that both theories had to be wrong and no logical explanation for the Moon, being what it is and where it is, exists even now.
The convoluted ‘Left hand/right hand double big whack’ theory tends to crudely fill the void, to prevent us worrying too much about this hole in our knowledge of our planet and its neighbour. Whilst most people believe this rather unlikely hypothesis to be true, the people involved with developing it acknowledge that it is improbable. All existing theories of the Moon’s origin have problems and the University of Wisconsin has pointed out that those for the Big Whack include: