The Shallows (5 page)

Read The Shallows Online

Authors: Nicholas Carr

BOOK: The Shallows
12.03Mb size Format: txt, pdf, ePub
Tools Of The Mind

A
child takes a crayon from a box and scribbles a yellow circle in the corner of a sheet of paper: this is the sun. She takes another crayon and draws a green squiggle through the center of the page: this is the horizon. Cutting through the horizon she draws two brown lines that come together in a jagged peak: this is a mountain. Next to the mountain, she draws a lopsided black rectangle topped by a red triangle: this is her house. The child gets older, goes to school, and in her classroom she traces on a page, from memory, an outline of the shape of her country. She divides it, roughly, into a set of shapes that represent the states. And inside one of the states she draws a five-pointed star to mark the town she lives in. The child grows up. She trains to be a surveyor. She buys a set of fine instruments and uses them to measure the boundaries and contours of a property. With the information, she draws a precise plot of the land, which is then made into a blueprint for others to use.

Our intellectual maturation as individuals can be traced through the way we draw pictures, or maps, of our surroundings. We begin with primitive, literal renderings of the features of the land we see around us, and we advance to ever more accurate, and more abstract, representations of geographic and topographic space. We progress, in other words, from drawing what we see to drawing what we know. Vincent Virga, an expert on cartography affiliated with the Library of Congress, has observed that the stages in the development of our mapmaking skills closely parallel the general stages of childhood cognitive development delineated by the twentieth-century Swiss psychologist Jean Piaget. We progress from the infant’s egocentric, purely sensory perception of the world to the young adult’s more abstract and objective analysis of experience. “First,” writes Virga, in describing how children’s drawings of maps advance, “perceptions and representational abilities are not matched; only the simplest topographical relationships are presented, without regard for perspective or distances. Then an intellectual ‘realism’ evolves, one that depicts everything known with burgeoning proportional relationships. And finally, a visual ‘realism’ appears, [employing] scientific calculations to achieve it.”
1

As we go through this process of intellectual maturation, we are also acting out the entire history of mapmaking. Mankind’s first maps, scratched in the dirt with a stick or carved into a stone with another stone, were as rudimentary as the scribbles of toddlers. Eventually the drawings became more realistic, outlining the actual proportions of a space, a space that often extended well beyond what could be seen with the eye. As more time passed, the realism became scientific in both its precision and its abstraction. The mapmaker began to use sophisticated tools like the direction-finding compass and the angle-measuring theodolite and to rely on mathematical reckonings and formulas. Eventually, in a further intellectual leap, maps came to be used not only to represent vast regions of the earth or heavens in minute detail, but to express ideas—a plan of battle, an analysis of the spread of an epidemic, a forecast of population growth. “The intellectual process of transforming experience
in
space to abstraction
of
space is a revolution in modes of thinking,” writes Virga.
2

The historical advances in cartography didn’t simply mirror the development of the human mind. They helped propel and guide the very intellectual advances that they documented. The map is a medium that not only stores and transmits information but also embodies a particular mode of seeing and thinking. As mapmaking progressed, the spread of maps also disseminated the mapmaker’s distinctive way of perceiving and making sense of the world. The more frequently and intensively people used maps, the more their minds came to understand reality in the maps’ terms. The influence of maps went far beyond their practical employment in establishing property boundaries and charting routes. “The use of a reduced, substitute space for that of reality,” explains the cartographic historian Arthur Robinson, “is an impressive act in itself.” But what’s even more impressive is how the map “advanced the evolution of abstract thinking” throughout society. “The combination of the reduction of reality and the construct of an analogical space is an attainment in abstract thinking of a very high order indeed,” writes Robinson, “for it enables one to discover structures that would remain unknown if not mapped.”
3
The technology of the map gave to man a new and more comprehending mind, better able to understand the unseen forces that shape his surroundings and his existence.

What the map did for space—translate a natural phenomenon into an artificial and intellectual conception of that phenomenon—another technology, the mechanical clock, did for time. For most of human history, people experienced time as a continuous, cyclical flow. To the extent that time was “kept,” the keeping was done by instruments that emphasized this natural process: sundials around which shadows would move, hourglasses down which sand would pour, clepsydras through which water would stream. There was no particular need to measure time with precision or to break a day up into little pieces. For most people, the movements of the sun, the moon, and the stars provided the only clocks they needed. Life was, in the words of the French medievalist Jacques Le Goff, “dominated by agrarian rhythms, free of haste, careless of exactitude, unconcerned by productivity.”
4

That began to change in the latter half of the Middle Ages. The first people to demand a more precise measurement of time were Christian monks, whose lives revolved around a rigorous schedule of prayer. In the sixth century, Saint Benedict had ordered his followers to hold seven prayer services at specified times during the day. Six hundred years later, the Cistercians gave new emphasis to punctuality, dividing the day into a regimented sequence of activities and viewing any tardiness or other waste of time to be an affront to God. Spurred by the need for temporal exactitude, monks took the lead in pushing forward the technologies of timekeeping. It was in the monastery that the first mechanical clocks were assembled, their movements governed by the swinging of weights, and it was the bells in the church tower that first sounded the hours by which people would come to parcel out their lives.

The desire for accurate timekeeping spread outward from the monastery. The royal and princely courts of Europe, brimming with riches and prizing the latest and most ingenious devices, began to covet clocks and invest in their refinement and manufacture. As people moved from the countryside to the town and started working in markets, mills, and factories rather than fields, their days came to be carved into ever more finely sliced segments, each announced by the tolling of a bell. As David Landes describes it in
Revolution in Time
, his history of timekeeping, “Bells sounded for start of work, meal breaks, end of work, closing of gates, start of market, close of market, assembly, emergencies, council meetings, end of drink service, time for street cleaning, curfew, and so on through an extraordinary variety of special peals in individual towns and cities.”
5

The need for tighter scheduling and synchronization of work, transport, devotion, and even leisure provided the impetus for rapid progress in clock technology. It was no longer enough for every town or parish to follow its own clock. Now, time had to be the same everywhere—or else commerce and industry would falter. Units of time became standardized—seconds, minutes, hours—and clock mechanisms were fine-tuned to measure those units with much greater accuracy. By the fourteenth century, the mechanical clock had become commonplace, a near-universal tool for coordinating the intricate workings of the new urban society. Cities vied with one another to install the most elaborate clocks in the towers of their town halls, churches, or palaces. “No European community,” the historian Lynn White has observed, “felt able to hold up its head unless in its midst the planets wheeled in cycles and epicycles, while angels trumpeted, cocks crew, and apostles, kings and prophets marched and countermarched at the booming of the hours.”
6

Clocks didn’t just become more accurate and more ornate. They got smaller and cheaper. Advances in miniaturization led to the development of affordable timepieces that could fit into the rooms of people’s houses or even be carried on their person. If the proliferation of public clocks changed the way people worked, shopped, played, and otherwise behaved as members of an ever more regulated society, the spread of more personal tools for tracking time—chamber clocks, pocket watches, and, a little later, wristwatches—had more intimate consequences. The personal clock became, as Landes writes, “an ever-visible, ever-audible companion and monitor.” By continually reminding its owner of “time used, time spent, time wasted, time lost,” it became both “prod and key to personal achievement and productivity.” The “personalization” of precisely measured time “was a major stimulus to the individualism that was an ever more salient aspect of Western civilization.”
7

The mechanical clock changed the way we saw ourselves. And like the map, it changed the way we thought. Once the clock had redefined time as a series of units of equal duration, our minds began to stress the methodical mental work of division and measurement. We began to see, in all things and phenomena, the pieces that composed the whole, and then we began to see the pieces of which the pieces were made. Our thinking became Aristotelian in its emphasis on discerning abstract patterns behind the visible surfaces of the material world. The clock played a crucial role in propelling us out of the Middle Ages and into the Renaissance and then the Enlightenment. In
Technics and Civilization
, his 1934 meditation on the human consequences of technology, Lewis Mumford described how the clock “helped create the belief in an independent world of mathematically measurable sequences.” The “abstract framework of divided time” became “the point of reference for both action and thought.”
8
Independent of the practical concerns that inspired the timekeeping machine’s creation and governed its day-to-day use, the clock’s methodical ticking helped bring into being the scientific mind and the scientific man.

 

EVERY TECHNOLOGY IS
an expression of human will. Through our tools, we seek to expand our power and control over our circumstances—over nature, over time and distance, over one another. Our technologies can be divided, roughly, into four categories, according to the way they supplement or amplify our native capacities. One set, which encompasses the plow, the darning needle, and the fighter jet, extends our physical strength, dexterity, or resilience. A second set, which includes the microscope, the amplifier, and the Geiger counter, extends the range or sensitivity of our senses. A third group, spanning such technologies as the reservoir, the birth control pill, and the genetically modified corn plant, enables us to reshape nature to better serve our needs or desires.

The map and the clock belong to the fourth category, which might best be called, to borrow a term used in slightly different senses by the social anthropologist Jack Goody and the sociologist Daniel Bell, “intellectual technologies.” These include all the tools we use to extend or support our mental powers—to find and classify information, to formulate and articulate ideas, to share know-how and knowledge, to take measurements and perform calculations, to expand the capacity of our memory. The typewriter is an intellectual technology. So are the abacus and the slide rule, the sextant and the globe, the book and the newspaper, the school and the library, the computer and the Internet. Although the use of any kind of tool can influence our thoughts and perspectives—the plow changed the outlook of the farmer, the microscope opened new worlds of mental exploration for the scientist—it is our intellectual technologies that have the greatest and most lasting power over what and how we think. They are our most intimate tools, the ones we use for self-expression, for shaping personal and public identity, and for cultivating relations with others.

What Nietzsche sensed as he typed his words onto the paper clamped in his writing ball—that the tools we use to write, read, and otherwise manipulate information work on our minds even as our minds work with them—is a central theme of intellectual and cultural history. As the stories of the map and the mechanical clock illustrate, intellectual technologies, when they come into popular use, often promote new ways of thinking or extend to the general population established ways of thinking that had been limited to a small, elite group. Every intellectual technology, to put it another way, embodies an intellectual ethic, a set of assumptions about how the human mind works or should work. The map and the clock shared a similar ethic. Both placed a new stress on measurement and abstraction, on perceiving and defining forms and processes beyond those apparent to the senses.

The intellectual ethic of a technology is rarely recognized by its inventors. They are usually so intent on solving a particular problem or untangling some thorny scientific or engineering dilemma that they don’t see the broader implications of their work. The users of the technology are also usually oblivious to its ethic. They, too, are concerned with the practical benefits they gain from employing the tool. Our ancestors didn’t develop or use maps in order to enhance their capacity for conceptual thinking or to bring the world’s hidden structures to light. Nor did they manufacture mechanical clocks to spur the adoption of a more scientific mode of thinking. Those were by-products of the technologies. But what by-products! Ultimately, it’s an invention’s intellectual ethic that has the most profound effect on us. The intellectual ethic is the message that a medium or other tool transmits into the minds and culture of its users.

Other books

Impetuous Designs by Major, Laura
Late Harvest Havoc by Jean-Pierre Alaux
The Night Everything Changed by Kristopher Rufty
Starfish by Peter Watts
Rouge by Leigh Talbert Moore