Smilla's Sense of Snow (52 page)

Read Smilla's Sense of Snow Online

Authors: Peter Høeg

BOOK: Smilla's Sense of Snow
11.25Mb size Format: txt, pdf, ePub
His face is almost invisible in the dark; the only solid thing is his voice. I'm trying to figure out why he's telling me all this. Why he's still lying, even under these circumstances, when he's totally in control.
“What about the pieces that were cut off?”
His hesitation explains everything, and it's a relief to figure out what he's up to. He still isn't sure how much I know or whether I'm alone. Whether someone might be waiting for him—on the island, at sea, or when he gets back home. For a short time, until I have talked, he still has some use for me.
At the same time, another more important realization comes to me. The fact that he's waiting, that he
has
to wait, means that the mechanic hasn't told him everything; he hasn't told him that I'm alone.
“We examined the pieces. We didn't find anything unusual. They consisted of a mixture of iron, nickel, peridotite, magnesium, and silicates.”
I'm sure that he's telling the truth.
“So it's not alive?”
In the darkness I sense his smile.
“There's heat. It's definitely producing heat. Otherwise it would have been carried out along with the ice. It melts the walls surrounding it at a rate comparable to the movement of the glacier.”
“Radioactivity?”
“We tested for it, but didn't find any.”
“And the dead men?” I ask. “What about the X-rays? The light-colored stripes inside their internal organs?”
He pauses for a moment.
“You wouldn't want to tell me how you know about that, would you?” he asks.
I don't answer.
“I knew it,” he says. “You and I, we could have made a good team. When I called you that night, it was on an impulse; I trust my intuition. I knew you would pick up the phone. I had you all figured out. I could have said, ‘Come over to our side.' Would you have come?”
“No.”
The tunnel starts at the foot of the rock. It's a simple design. They dynamited their way down where the ice had a natural tendency to let go of the rock, and then they cemented large concrete sewer pipes to the wall of the tunnel. The pipes slant down at a steep angle; the steps inside are made of wood. This surprises me at first, until I remember how difficult it can be to pour cement on a permafrost foundation.
Thirty feet down there's a fire.
The smoke is coming from a room adjacent to the stairs, a cement
shell reinforced with beams. Several sacks are spread on the floor. On top of the sacks there's an oil barrel filled with burning, chopped-up wooden crates.
Against the opposite wall, instruments and equipment are piled on a wide table. Chromatographs, microscopes, large crystallization jars, an incubator, and an apparatus I've never seen before, built like a big plastic box with glass on the front. Underneath the table there's a generator and more wooden crates like the ones burning in the barrel. Nowadays everything goes in and out of style, even laboratory equipment, and these instruments remind me of the seventies. Everything is covered with a layer of gray ice. They must have been left behind in '66 or '91.
Tørk places his hand on the plastic box.
“Electrophoresis. To separate and analyze proteins. Loyen brought it along in '66. When they still thought they were dealing with some form of organic life.”
He gives a small nod. Everything he does is pervaded with the knowledge that these small signs and gestures are enough to make the rest of the world fall into place. Verlaine is standing at a tall worktable with a dissecting microscope. He adjusts it for me, the ocular on 10 and the objective on 20. He moves a gas lamp closer.
“We're in the process of thawing out the generator.”
At first I don't see a thing. Then I adjust the focus and see a coconut.

Cyclops marinus
,” says Tørk. “Water flea. It or its relatives are found everywhere, in all the oceans of the globe. The threads are organs of equilibrium. We've given it a little hydrochloric acid; that's why it's so still. Try looking at the back of the body. What do you see?”
I don't see anything. He takes over the microscope, moving the petri dish under it and adjusting the focus again.
“The digestive system,” I say. “The intestines.”
“Those aren't intestines. That's a worm.”
Now I see it. The intestines and stomach form a dark field along the underside of the animal. The long bright channel goes up along its back.
“The primary group is
Phylum nematoda
, roundworm, and it
belongs to the subclass
Dracunculoidea.
Its name is
Dracunculus borealis
, the Arctic worm. Known and described since at least the Middle Ages. A large parasite. Found in whales, seals, and dolphins ; it penetrates the musculature from the intestines. The males and females mate, the male dies, and the female wanders to the subcutis, where it forms a nodule as big as a child's fist. When the mature worm senses that there are
Cyclops
in the surrounding water, it perforates the skin and releases millions of small living larvae into the sea, where they're eaten by the water fleas, forming what is called a host, a place where the worms can go through a process of development lasting several weeks. When the flea, via seawater, gets into the mouth cavity or intestines of a larger mammal, it disintegrates and the larva gets out and bores into this new and larger host. There it matures, mates, makes its way to the subcutis, and completes the cycle. Apparently neither the water flea nor the mammal suffers any harm from it. One of the world's most well-adapted parasites. Have you ever wondered what prevents parasites from spreading?”
Verlaine puts on more wood and pulls the generator over to the fire. The radiant heat burns one side of my body; the other is cold. There's no proper ventilation. The smoke is suffocating. They must be in a hurry.
“Some kind of obstruction is what always stops the parasites. Take, for instance, the Guinea worm, which is the closest relative of the Arctic worm. It's dependent on heat and stagnant water. It's found wherever people are dependent on surface water.”
“Such as on the border between Burma, Laos, and Cambodia,” I say. “For instance, in Chiang Rai.”
They both freeze. In Tørk it's a barely visible pause.
“Yes,” he says, “in Chiang Rai, for example, during the relatively rare periods of drought. As soon as it rains and the water begins to flow, as soon as it cools off, the conditions become more difficult for the worm. That's the way things have to be. Parasites have developed along with their hosts. The Guinea worm has developed along with human beings, perhaps over the past million years. They are mutually compatible. Every year 140 million people are exposed to the risk of being infected with the Guinea worm.
There are 10 million cases annually. Most of those who are infected endure a painful period of several months, but then the worm is expelled. Even in Chiang Rai only half a percent of the adult population, at the most, suffer any permanent damage. This is one of the primary rules of nature's delicate balance: A good parasite does not kill its host.”
He moves slightly, and I involuntarily step back. He looks in the microscope.
“Imagine their situation in '66—Loyen, Ving, and Licht. Everything has been planned. There are problems, of course, but they're mere technicalities and solvable. They've pinpointed the stone, constructed the entryway and these rooms; the weather is good, and they have plenty of time, relatively speaking. They realize that they can't bring the whole stone back, but they know they can take home a piece of it. There are photographs of their saws, a brilliant invention, a hardened steel band that ran across rollers. Loyen was opposed to cutting the stone with blowtorches. Then just as the Inuits are putting the saw in position, they die. Forty-eight hours after their first dive. They die almost simultaneously, within an hour of each other. Everything changes. The project has failed and time is running out. They have to improvise an accident. Loyen is the one who does it, of course. He has enough presence of mind not to destroy the bodies. At that point he already has a feeling that something is wrong. As soon as they reach Nuuk he does an autopsy. And what does he find?”
“Look at the time,” says Verlaine.
Tørk ignores him. “He finds the Arctic worm. A widespread parasite. Big, twelve to sixteen inches long, but quite ordinary. A roundworm whose cycle is known and understood. There's only one thing wrong: it's not found in human beings. In whales, in seals, and dolphins, and occasionally in walruses. But not in human beings. Nearly every day infected meat is eaten, especially by Inuits. But the moment the larva enters the human body, it's recognized by our immune system as a foreign object and is devoured by lymphocytes. It has never adapted to our immune system. It has always been limited to certain large sea mammals with which it must have developed simultaneously. It's part of the balance
of nature. Imagine Loyen's astonishment when he finds it in the corpses. And quite by accident, too. Because at the last minute he was forced to take X-rays to identify the bodies.”
I don't want to listen to him or talk to him, but I can't help it. And besides, it stretches out the time.
“Why did it happen?”
“That's the question Loyen couldn't answer. So he concentrated on a different question:
How
did it happen? He had brought samples home from the water around the stone. Aside from the meltwater, the lake is fed by another lake higher up, on the surface. There's some bird life up there. And quite a lot of trout. And several kinds of fleas. The water around the stone is full of them. All of the samples Loyen brought home were infected. So he decided to graft the larva onto living human tissue.”
“That sounds lovely,” I say. “How did he manage to do that?”
As I ask the question, the answer comes to me. He did it in Greenland. In Denmark the chance of being discovered would be too great.
Tørk sees that I realize how it was done.
“It took him twenty-five years. But he found out that the larva had adapted to the human immune system. As soon as it's in the mouth it penetrates the open mucous membranes and forms a kind of skin, created from the person's own proteins. In this camouflage the parasite is mistaken for the human body itself and the defense system leaves it in peace. Then it starts to grow. Not slowly, over a period of months, the way it does in seals and whales, but rapidly, hour by hour and minute by minute. Even the mating and wandering through the body, which can take up to six months in a sea mammal, now take only a few days. But that's not the decisive factor.”
Verlaine takes him by the arm. Tørk looks at him. Verlaine removes his hand.
“I want to ask her about something,” says Tørk.
Maybe that's what he believes, but that's not why he's talking. He's talking in order to win attention and recognition. Beneath his self-confidence and apparent objectivity there is a wild pride and triumph at what he has discovered. Both Verlaine and I are sweating
and have started to cough. But he is cool and at ease; in the flickering light of the fire his face is utterly calm. Maybe it's because we're standing in the middle of the ice, maybe it's because it's so obvious that we're nearing the end, that he suddenly seems so transparent to me. As always when an adult becomes transparent, the child inside him steps forth. I remember Victor Halkenhvad's letter, and suddenly, irresistibly, the words spew out of my mouth of their own accord.
“Like the bicycle you never had when you were a child.”
The remark is so absurd that at first he doesn't understand it. Then the meaning sinks in, and for a moment he staggers as if I'd hit him. He almost loses it, but then he pulls himself together.
“You might think we've discovered a new species. But that's not the case. It's the Arctic worm. But with a vital difference. It has adapted to the human immune system. But without adapting to our equilibrium. The pregnant female does not make its way to the subcutis after mating. It enters the internal organs, the heart and the liver. That's where it releases its larvae. The larvae that have been living inside the mother, that aren't familiar with the human body, that aren't covered with a protein skin. The body reacts to them with infection and inflammation. It goes into shock. There are 10 million larvae in a single release. Inside the vital organs. The person dies on the spot. There's no way to save him. No matter what else has happened to the Arctic worm, it has upset the balance. It has killed its host. It's a poor parasite, in terms of human beings. But an excellent killer.”
Verlaine says something in a language that I don't understand. Tørk again ignores him.
“Verlaine grafted the larva onto all the fish we could get hold of: saltwater fish, freshwater fish, big ones and small ones, at varying temperatures. The parasite adapts to every single one. It can live anywhere. Do you know what that means?”
“That it's not fussy?”

Other books

Unbefitting a Lady by Bronwyn Scott
The Dirt Diary by Staniszewski, Anna
To Asmara by Thomas Keneally
Airs and Graces by Roz Southey
A Summer in Paris by Cynthia Baxter
quintessence. by Buhl, Sarah
Thistle and Twigg by Mary Saums
Decompression by Juli Zeh