Read Silent Spring Online

Authors: Rachel Carson

Silent Spring (35 page)

BOOK: Silent Spring
8.84Mb size Format: txt, pdf, ePub
ads

If this seems absurd, consider the situation in the citrus groves of California, where the world's most famous and successful experiment in biological control was carried out in the 1880's. In 1872 a scale insect that feeds on the sap of citrus trees appeared in California and within the next 15 years developed into a pest so destructive that the fruit crop in many orchards was a complete loss. The young citrus industry was threatened with destruction. Many farmers gave up and pulled out their trees. Then a parasite of the scale insect was imported from Australia, a small lady beetle called the vedalia. Within only two years after the first shipment of the beetles, the scale was under complete control throughout the citrus-growing sections of California. From that time on one could search for days among the orange groves without finding a single scale insect.

Then in the 1940's the citrus growers began to experiment with glamorous new chemicals against other insects. With the advent of DDT and the even more toxic chemicals to follow, the populations of the vedalia in many sections of California were wiped out. Its importation had cost the government a mere 55000. Its activities had saved the fruit growers several millions of dollars a year, but in a moment of heedlessness the benefit was canceled out. Infestations of the scale insect quickly reappeared and damage exceeded anything that had been seen for fifty years.

"This possibly marked the end of an era," said Dr. Paul DeBach of the Citrus Experiment Station in Riverside. Now control of the scale has become enormously complicated. The vedalia can be maintained only by repeated releases and by the most careful attention to spray schedules, to minimize their contact with insecticides. And regardless of what the citrus growers do, they are more or less at the mercy of the owners of adjacent acreages, for severe damage has been done by insecticidal drift.

All these examples concern insects that attack agricultural crops. What of those that carry disease? There have already been warnings. On Nissan Island in the South Pacific, for example, spraying had been carried on intensively during the Second World War, but was stopped when hostilities came to an end. Soon swarms of a malaria-carrying mosquito reinvaded the island. All of its predators had been killed off and there had not been time for new populations to become established. The way was therefore clear for a tremendous population explosion. Marshall Laird, who has described this incident, compares chemical control to a treadmill; once we have set foot on it we are unable to stop for fear of the consequences.

In some parts of the world disease can be linked with spraying in quite a different way. For some reason, snail-like mollusks seem to be almost immune to the effects of insecticides. This has been observed many times. In the general holocaust that followed the spraying of salt marshes in eastern Florida (pages 146–47), aquatic snails alone survived. The scene as described was a macabre picture—something that might have been created by a surrealist brush. The snails moved among the bodies of the dead fishes and the moribund crabs, devouring the victims of the death rain of poison.

But why is this important? It is important because many aquatic snails serve as hosts of dangerous parasitic worms that spend part of their life cycle in a mollusk, part in a human being. Examples are the blood flukes, or schistosoma, that cause serious disease in man when they enter the body by way of drinking water or through the skin when people are bathing in infested waters. The flukes are released into the water by the host snails. Such diseases are especially prevalent in parts of Asia and Africa. Where they occur, insect control measures that favor a vast increase of snails are likely to be followed by grave consequences.

And of course man is not alone in being subject to snail-borne disease. Liver disease in cattle, sheep, goats, deer, elk, rabbits, and various other warm-blooded animals may be caused by liver flukes that spend part of their life cycles in fresh-water snails. Livers infested with these worms are unfit for use as human food and are routinely condemned. Such rejections cost American cattlemen about 3½ million dollars annually. Anything that acts to increase the number of snails can obviously make this problem an even more serious one.

Over the past decade these problems have cast long shadows, but we have been slow to recognize them. Most of those best fitted to develop natural controls and assist in putting them into effect have been too busy laboring in the more exciting vineyards of chemical control. It was reported in 1960 that only 2 per cent of all the economic entomologists in the country were then working in the field of biological controls. A substantial number of the remaining 98 per cent were engaged in research on chemical insecticides.

Why should this be? The major chemical companies are pouring money into the universities to support research on insecticides. This creates attractive fellowships for graduate students and attractive staff positions. Biological-control studies, on the other hand, are never so endowed—for the simple reason that they do not promise anyone the fortunes that are to be made in the chemical industry. These are left to state and federal agencies, where the salaries paid are far less.

This situation also explains the otherwise mystifying fact that certain outstanding entomologists are among the leading advocates of chemical control. Inquiry into the background of some of these men reveals that their entire research program is supported by the chemical industry. Their professional prestige, sometimes their very jobs depend on the perpetuation of chemical methods. Can we then expect them to bite the hand that literally feeds them? But knowing their bias, how much credence can we give to their protests that insecticides are harmless?

Amid the general acclaim for chemicals as the principal method of insect control, minority reports have occasionally been filed by those few entomologists who have not lost sight of the fact that they are neither chemists nor engineers, but biologists.

F. H. Jacob in England has declared that "the activities of many so-called economic entomologists would make it appear that they operate in the belief that salvation lies at the end of a spray nozzle ... that when they have created problems of resurgence or resistance or mammalian toxicity, the chemist will be ready with another pill. That view is not held here ... Ultimately only the biologist will provide the answers to the basic problems of pest control."

"Economic entomologists must realize," wrote A. D. Pickett of Nova Scotia, "that they are dealing with living things ... their work must be more than simply insecticide testing or a quest for highly destructive chemicals." Dr. Pickett himself was a pioneer in the field of working out sane methods of insect control that take full advantage of the predatory and parasitic species. The method which he and his associates evolved is today a shining model but one too little emulated. Only in the integrated control programs developed by some California entomologists do we find anything comparable in this country.

Dr. Pickett began his work some thirty-five years ago in the apple orchards of the Annapolis Valley in Nova Scotia, once one of the most concentrated fruit-growing areas in Canada. At that time it was believed that insecticides—then inorganic chemicals—would solve the problems of insect control, that the only task was to induce fruit growers to follow the recommended methods. But the rosy picture failed to materialize. Somehow the insects persisted. New chemicals were added, better spraying equipment was devised, and the zeal for spraying increased, but the insect problem did not get any better. Then DDT promised to "obliterate the nightmare" of codling moth outbreaks. What actually resulted from its use was an unprecedented scourge of mites. "We move from crisis to crisis, merely trading one problem for another," said Dr. Pickett.

At this point, however, Dr. Pickett and his associates struck out on a new road instead of going along with other entomologists who continued to pursue the will-o'-the-wisp of the ever more toxic chemical. Recognizing that they had a strong ally in nature, they devised a program that makes maximum use of natural controls and minimum use of insecticides. Whenever insecticides are applied only minimum dosages are used—barely enough to control the pest without avoidable harm to beneficial species. Proper timing also enters in. Thus, if nicotine sulphate is applied before rather than after the apple blossoms turn pink one of the important predators is spared, probably because it is still in the egg stage.

Dr. Pickett uses special care to select chemicals that will do as little harm as possible to insect parasites and predators. "When we reach the point of using DDT, parathion, chlordane, and other new insecticides as routine control measures in the same way we have used the inorganic chemicals in the past, entomologists interested in biological control may as well throw in the sponge," he says. Instead of these highly toxic, broad-spectrum insecticides, he places chief reliance on ryania (derived from ground stems of a tropical plant), nicotine sulphate, and lead arsenate. In certain situations very weak concentrations of DDT or malathion are used (1 or 2 ounces per 100 gallons—in contrast to the usual 1 or 2 pounds per 100 gallons). Although these two are the least toxic of the modern insecticides, Dr. Pickett hopes by further research to replace them with safer and more selective materials.

How well has this program worked? Nova Scotia orchardists who are following Dr. Pickett's modified spray program are producing as high a proportion of first-grade fruit as are those who are using intensive chemical applications. They are also getting as good production. They are getting these results, moreover, at a substantially lower cost. The outlay for insecticides in Nova Scotia apple orchards is only from 10 to 20 per cent of the amount spent in most other apple-growing areas.

More important than even these excellent results is the fact that the modified program worked out by these Nova Scotian entomologists is not doing violence to nature's balance. It is well on the way to realizing the philosophy stated by the Canadian entomologist G. C. Ullyett a decade ago: "We must change our philosophy, abandon our attitude of human superiority and admit that in many cases in natural environments we find ways and means of limiting populations of organisms in a more economical way than we can do it ourselves."

16. The Rumblings of an Avalanche

 

I
F
D
A
R
W
I
N
were alive today the insect world would delight and astound him with its impressive verification of his theories of the survival of the fittest. Under the stress of intensive chemical spraying the weaker members of the insect populations are being weeded out. Now, in many areas and among many species only the strong and fit remain to defy our efforts to control them.

Nearly half a century ago, a professor of entomology at Washington State College, A. L. Melander, asked the now purely rhetorical question, "Can insects become resistant to sprays?" If the answer seemed to Melander unclear, or slow in coming, that was only because he asked his question too soon—in 1914 instead of 40 years later. In the pre-DDT era, inorganic chemicals, applied on a scale that today would seem extraordinarily modest, produced here and there strains of insects that could survive chemical spraying or dusting. Melander himself had run into difficulty with the San José scale, for some years satisfactorily controlled by spraying with lime sulfur. Then in the Clarkston area of Washington the insects became refractory—they were harder to kill than in the orchards of the Wenatchee and Yakima valleys and elsewhere.

Suddenly the scale insects in other parts of the country seemed to have got the same idea: it was not necessary for them to die under the sprayings of lime sulfur, diligently and liberally applied by orchardists. Throughout much of the Midwest thousands of acres of fine orchards were destroyed by insects now impervious to spraying.

Then in California the time-honored method of placing canvas tents over trees and fumigating them with hydrocyanic acid began to yield disappointing results in certain areas, a problem that led to research at the California Citrus Experiment Station, beginning about 1915 and continuing for a quarter of a century. Another insect to learn the profitable way of resistance was the codling moth, or appleworm, in the 1920's, although lead arsenate had been used successfully against it for some 40 years.

But it was the advent of DDT and all its many relatives that ushered in the true Age of Resistance. It need have surprised no one with even the simplest knowledge of insects or of the dynamics of animal populations that within a matter of a very few years an ugly and dangerous problem had clearly defined itself. Yet awareness of the fact that insects possess an effective counterweapon to aggressive chemical attack seems to have dawned slowly. Only those concerned with disease-carrying insects seem by now to have been thoroughly aroused to the alarming nature of the situation; the agriculturists still for the most part blithely put their faith in the development of new and
ever more toxic chemicals, although the present difficulties have been born of just such specious reasoning.

BOOK: Silent Spring
8.84Mb size Format: txt, pdf, ePub
ads

Other books

The Deed by Keith Blanchard
Avenged by Janice Cantore
The Very Picture of You by Isabel Wolff
13 French Street by Gil Brewer
In the Break by Jack Lopez