Silent Spring (6 page)

Read Silent Spring Online

Authors: Rachel Carson

BOOK: Silent Spring
4.48Mb size Format: txt, pdf, ePub

This is really not surprising. In the normal chemistry of the human body there is just such a disparity between cause and effect. For example, a quantity of iodine as small as two ten-thousandths of a gram spells the difference between health and disease. Because these small amounts of pesticides are cumulatively stored and only slowly excreted, the threat of chronic poisoning and degenerative changes of the liver and other organs is very real.

Scientists do not agree upon how much DDT can be stored in the human body. Dr. Arnold Lehman, who is the chief pharmacologist of the Food and Drug Administration, says there is neither a floor below which DDT is not absorbed nor a ceiling beyond which absorption and storage ceases. On the other hand, Dr. Wayland Hayes of the United States Public Health Service contends that in every individual a point of equilibrium is reached, and that DDT in excess of this amount is excreted. For practical purposes it is not particularly important which of these men is right. Storage in human beings has been well investigated, and we know that the average person is storing potentially harmful amounts. According to various studies, individuals with no known exposure (except the inevitable dietary one) store an average of 5.3 parts per million to 7.4 parts per million; agricultural workers 17.1 parts per million; and workers in insecticide plants as high as 648 parts per million! So the range of proven storage is quite wide and, what is even more to the point, the minimum figures are above the level at which damage to the liver and other organs or tissues may begin.

One of the most sinister features of DDT and related chemicals is the way they are passed on from one organism to another through all the links of the food chains. For example, fields of alfalfa are dusted with DDT; meal is later prepared from the alfalfa and fed to hens; the hens lay eggs which contain DDT. Or the hay, containing residues of 7 to 8 parts per million, may be fed to cows. The DDT will turn up in the milk in the amount of about 3 parts per million, but in butter made from this milk the concentration may run to 65 parts per million. Through such a process of transfer, what started out as a very small amount of DDT may end as a heavy concentration. Farmers nowadays find it difficult to obtain uncontaminated fodder for their milk cows, though the Food and Drug Administration forbids the presence of insecticide residues in milk shipped in interstate commerce.

The poison may also be passed on from mother to offspring. Insecticide residues have been recovered from human milk in samples tested by Food and Drug Administration scientists. This means that the breast-fed human infant is receiving small but regular additions to the load of toxic chemicals building up in his body. It is by no means his first exposure, however: there is good reason to believe this begins while he is still in the womb. In experimental animals the chlorinated hydrocarbon insecticides freely cross the barrier of the placenta, the traditional protective shield between the embryo and harmful substances in the mother's body. While the quantities so received by human infants would normally be small, they are not unimportant because children are more susceptible to poisoning than adults. This situation also means that today the average individual almost certainly starts life with the first deposit of the growing load of chemicals his body will be required to carry thenceforth.

All these facts—storage at even low levels, subsequent accumulation, and occurrence of liver damage at levels that may easily occur in normal diets, caused Food and Drug Administration scientists to declare as early as 1950 that it is "extremely likely the potential hazard of DDT has been underestimated." There has been no such parallel situation in medical history. No one yet knows what the ultimate consequences may be.

Chlordane, another chlorinated hydrocarbon, has all these unpleasant attributes of DDT plus a few that are peculiarly its own. Its residues are long persistent in soil, on foodstuffs, or on surfaces to which it may be applied. Chlordane makes use of all available portals to enter the body. It may be absorbed through the skin, may be breathed in as a spray or dust, and of course is absorbed from the digestive tract if residues are swallowed. Like all other chlorinated hydrocarbons, its deposits build up in the body in cumulative fashion. A diet containing such a small amount of chlordane as 2.5 parts per million may eventually lead to storage of 75 parts per million in the fat of experimental animals.

So experienced a pharmacologist as Dr. Lehman has described chlordane in 1950 as "one of the most toxic of insecticides—anyone handling it could be poisoned." Judging by the carefree liberality with which dusts for lawn treatments by suburbanites are laced with chlordane, this warning has not been taken to heart. The fact that the suburbanite is not instantly stricken has little meaning, for the toxins may sleep long in his body, to become manifest months or years later in an obscure disorder almost impossible to trace to its origins. On the other hand, death may strike quickly. One victim who accidentally spilled a 25 per cent industrial solution on the skin developed symptoms of poisoning within 40 minutes and died before medical help could be obtained. No reliance can be placed on receiving advance warning which might allow treatment to be had in time.

Heptachlor, one of the constituents of chlordane, is marketed as a separate formulation. It has a particularly high capacity for storage in fat. If the diet contains as little as Mo of 1 part per million there will be measurable amounts of heptachlor in the body. It also has the curious ability to undergo change into a chemically distinct substance known as heptachlor epoxide. It does this in soil and in the tissues of both plants and animals. Tests on birds indicate that the epoxide that results from this change is more toxic than the original chemical, which in turn is four times as toxic as chlordane.

As long ago as the mid-1930's a special group of hydrocarbons, the chlorinated naphthalenes, was found to cause hepatitis, and also a rare and almost invariably fatal liver disease in persons subjected to occupational exposure. They have led to illness and death of workers in electrical industries; and more recently, in agriculture, they have been considered a cause of a mysterious and usually fatal disease of cattle. In view of these antecedents, it is not surprising that three of the insecticides that are related to this group are among the most violently poisonous of all the hydrocarbons. These are dieldrin, aldrin, and endrin.

Dieldrin, named for a German chemist, Diels, is about 5 times as toxic as DDT when swallowed but 40 times as toxic when absorbed through the skin in solution. It is notorious for striking quickly and with terrible effect at the nervous system, sending the victims into convulsions. Persons thus poisoned recover so slowly as to indicate chronic effects. As with other chlorinated hydrocarbons, these long-term effects include severe damage to the liver. The long duration of its residues and the effective insecticidal action make dieldrin one of the most used insecticides today, despite the appalling destruction of wildlife that has followed its use. As tested on quail and pheasants, it has proved to be about 40 to 50 times as toxic as DDT.

There are vast gaps in our knowledge of how dieldrin is stored or distributed in the body, or excreted, for the chemists' ingenuity in devising insecticides has long ago outrun biological knowledge of the way these poisons affect the living organism. However, there is every indication of long storage in the human body, where deposits may lie dormant like a slumbering volcano, only to flare up in periods of physiological stress when the body draws upon its fat reserves. Much of what we do know has been learned through hard experience in the antimalarial campaigns carried out by the World Health Organization. As soon as dieldrin was substituted for DDT in malaria-control work (because the malaria mosquitoes had become resistant to DDT), cases of poisoning among the spraymen began to occur. The seizures were severe—from half to all (varying in the different programs) of the men affected went into convulsions and several died. Some had convulsions as long as
four months
after the last exposure.

Aldrin is a somewhat mysterious substance, for although it exists as a separate entity it bears the relation of alter ego to dieldrin. When carrots are taken from a bed treated with aldrin they are found to contain residues of dieldrin. This change occurs in living tissues and also in soil. Such alchemistic transformations have led to many erroneous reports, for if a chemist, knowing aldrin has been applied, tests for it he will be deceived into thinking all residues have been dissipated. The residues are there, but they are dieldrin and this requires a different test.

Like dieldrin, aldrin is extremely toxic. It produces degenerative changes in the liver and kidneys. A quantity the size of an aspirin tablet is enough to kill more than 400 quail. Many cases of human poisonings are on record, most of them in connection with industrial handling.

Aldrin, like most of this group of insecticides, projects a menacing shadow into the future, the shadow of sterility. Pheasants fed quantities too small to kill them nevertheless laid few eggs, and the chicks that hatched soon died. The effect is not confined to birds. Rats exposed to aldrin had fewer pregnancies and their young were sickly and short-lived. Puppies born of treated mothers died within three days. By one means or another, the new generations suffer for the poisoning of their parents. No one knows whether the same effect will be seen in human beings, yet this chemical has been sprayed from airplanes over suburban areas and farmlands.

Endrin is the most toxic of all the chlorinated hydrocarbons. Although chemically rather closely related to dieldrin, a little twist in its molecular structure makes it 5 times as poisonous. It makes the progenitor of all this group of insecticides, DDT, seem by comparison almost harmless. It is 15 times as poisonous as DDT to mammals, 30 times as poisonous to fish, and about 300 times as poisonous to some birds.

In the decade of its use, endrin has killed enormous numbers of fish, has fatally poisoned cattle that have wandered into sprayed orchards, has poisoned wells, and has drawn a sharp warning from at least one state health department that its careless use is endangering human lives.

In one of the most tragic cases of endrin poisoning there was no apparent carelessness; efforts had been made to take precautions apparently considered adequate. A year-old child had been taken by his American parents to live in Venezuela. There were cockroaches in the house to which they moved, and after a few days a spray containing endrin was used. The baby and the small family dog were taken out of the house before the spraying was done about nine o'clock one morning. After the spraying the floors were washed. The baby and dog were returned to the house in midafternoon. An hour or so later the dog vomited, went into convulsions, and died. At 10
P
.
M
.
on the evening of the same day the baby also vomited, went into convulsions, and lost consciousness. After that fateful contact with endrin, this normal, healthy child became little more than a vegetable—unable to see or hear, subject to frequent muscular spasms, apparently completely cut off from contact with his surroundings. Several months of treatment in a New York hospital failed to change his condition or bring hope of change. "It is extremely doubtful," reported the attending physicians, "that any useful degree of recovery will occur."

The second major group of insecticides, the alkyl or organic phosphates, are among the most poisonous chemicals in the world. The chief and most obvious hazard attending their use is that of acute poisoning of people applying the sprays or accidentally coming in contact with drifting spray, with vegetation coated by it, or with a discarded container. In Florida, two children found an empty bag and used it to repair a swing. Shortly thereafter both of them died and three of their playmates became ill. The bag had once contained an insecticide called parathion, one of the organic phosphates; tests established death by parathion poisoning. On another occasion two small boys in Wisconsin, cousins, died on the same night. One had been playing in his yard when spray drifted in from an adjoining field where his father was spraying potatoes with parathion; the other had run playfully into the barn after his father and had put his hand on the nozzle of the spray equipment.

The origin of these insecticides has a certain ironic significance. Although some of the chemicals themselves—organic esters of phosphoric acid—had been known for many years, their insecticidal properties remained to be discovered by a German chemist, Gerhard Schrader, in the late 1930's. Almost immediately the German government recognized the value of these same chemicals as new and devastating weapons in man's war against his own kind, and the work on them was declared secret. Some became the deadly nerve gases. Others, of closely allied structure, became insecticides.

The organic phosphorus insecticides act on the living organism in a peculiar way. They have the ability to destroy enzymes—enzymes that perform necessary functions in the body. Their target is the nervous system, whether the victim is an insect or a warm-blooded animal. Under normal conditions, an impulse passes from nerve to nerve with the aid of a "chemical transmitter" called acetylcholine, a substance that performs an essential function and then disappears. Indeed, its existence is so ephemeral that medical researchers are unable, without special procedures, to sample it before the body has destroyed it. This transient nature of the transmitting chemical is necessary to the normal functioning of the body. If the acetylcholine is not destroyed as soon as a nerve impulse has passed, impulses continue to flash across the bridge from nerve to nerve, as the chemical exerts its effects in an ever more intensified manner. The movements of the whole body become uncoordinated: tremors, muscular spasms, convulsions, and death quickly result.

This contingency has been provided for by the body. A protective enzyme called cholinesterase is at hand to destroy the transmitting chemical once it is no longer needed. By this means a precise balance is struck and the body never builds up a dangerous amount of acetylcholine. But on contact with the organic phosphorus insecticides, the protective enzyme is destroyed, and as the quantity of the enzyme is reduced that of the transmitting chemical builds up. In this effect, the organic phosphorus compounds resemble the alkaloid poison muscarine, found in a poisonous mushroom, the fly amanita.

Other books

One Night (Friends #0.5) by Monica Murphy
Daughter of Deceit by Victoria Holt
After My Fashion by John Cowper Powys
Spice by Seressia Glass
El viajero by Gary Jennings
Silk and Stone by Deborah Smith