Authors: Rachel Carson
The results probably gratified the farmers, for the casualty list included some 65,000 red-winged blackbirds and starlings. What other wildlife deaths may have gone unnoticed and unrecorded is not known. Parathion is not a specific for blackbirds: it is a universal killer. But such rabbits or raccoons or opossums as may have roamed those bottomlands and perhaps never visited the farmers' cornfields were doomed by a judge and jury who neither knew of their existence nor cared.
And what of human beings? In California orchards sprayed with this same parathion, workers handling foliage that had been treated
a month
earlier collapsed and went into shock, and escaped death only through skilled medical attention. Does Indiana still raise any boys who roam through woods or fields and might even explore the margins of a river? If so, who guarded the poisoned area to keep out any who might wander in, in misguided search for unspoiled nature? Who kept vigilant watch to tell the innocent stroller that the fields he was about to enter were deadlyâall their vegetation coated with a lethal film? Yet at so fearful a risk the farmers, with none to hinder them, waged their needless war on blackbirds.
In each of these situations, one turns away to ponder the question: Who has made the decision that sets in motion these chains of poisonings, this ever-widening wave of death that spreads out, like ripples when a pebble is dropped into a still pond? Who has placed in one pan of the scales the leaves that might have been eaten by the beetles and in the other the pitiful heaps of many-hued feathers, the lifeless remains of the birds that fell before the unselective bludgeon of insecticidal poisons? Who has decidedâwho has the
right
to decideâfor the countless legions of people who were not consulted that the supreme value is a world without insects, even though it be also a sterile world ungraced by the curving wing of a bird in flight? The decision is that of the authoritarian temporarily entrusted with power; he has made it during a moment of inattention by millions to whom beauty and the ordered world of nature still have a meaning that is deep and imperative.
Â
F
R
O
M
T
H
E
G
R
E
E
N
D
E
P
T
H
S
of the offshore Atlantic many paths lead back to the coast. They are paths followed by fish; although unseen and intangible, they are linked with the outflow of waters from the coastal rivers. For thousands upon thousands of years the salmon have known and followed these threads of fresh water that lead them back to the rivers, each returning to the tributary in which it spent the first months or years of life. So, in the summer and fall of 1953, the salmon of the river called Miramichi on the coast of New Brunswick moved in from their feeding grounds in the far Atlantic and ascended their native river. In the upper reaches of the Miramichi, in streams that gather together a network of shadowed brooks, the salmon deposited their eggs that autumn in beds of gravel over which the stream water flowed swift and cold. Such places, the watersheds of the great coniferous forests of spruce and balsam, of hemlock and pine, provide the kind of spawning grounds that salmon must have in order to survive.
These events repeated a pattern that was age-old, a pattern that had made the Miramichi one of the finest salmon streams in North America. But that year the pattern was to be broken.
During the fall and winter the salmon eggs, large and thick-shelled, lay in shallow gravel-filled troughs, or redds, which the mother fish had dug in the stream bottom. In the cold of winter they developed slowly, as was their way, and only when spring at last brought thawing and release to the forest streams did the young hatch. At first they hid among the pebbles of the stream bedâtiny fish about half an inch long. They took no food, living on the large yolk sac. Not until it was absorbed would they begin to search the stream for small insects.
With the newly hatched salmon in the Miramichi that spring of 1954 were young of previous hatchings, salmon a year or two old, young fish in brilliant coats marked with bars and bright red spots. These young fed voraciously, seeking out the strange and varied insect life of the stream.
As the summer approached, all this was changed. That year the watershed of the Northwest Miramichi was included in a vast spraying program which the Canadian Government had embarked upon the previous yearâa program designed to save the forests from the spruce budworm. The budworm is a native insect that attacks several kinds of evergreens. In eastern Canada it seems to become extraordinarily abundant about every 35 years. The early 1950's had seen such an upsurge in the budworm populations. To combat it, spraying with DDT was begun, first in a small way, then at a suddenly accelerated rate in 1953. Millions of acres of forests were sprayed instead of thousands as before, in an effort to save the balsams, which are the mainstay of the pulp and paper industry.
So in 1954, in the month of June, the planes visited the forests of the Northwest Miramichi and white clouds of settling mist marked the crisscross pattern of their flight. The sprayâone-half pound of DDT to the acre in a solution of oilâfiltered down through the balsam forests and some of it finally reached the ground and the flowing streams. The pilots, their thoughts only on their assigned task, made no effort to avoid the streams or to shut off the spray nozzles while flying over them; but because spray drifts so far in even the slightest stirrings of air, perhaps the result would have been little different if they had.
Soon after the spraying had ended there were unmistakable signs that all was not well. Within two days dead and dying fish, including many young salmon, were found along the banks of the stream. Brook trout also appeared among the dead fish, and along the roads and in the woods birds were dying. All the life of the stream was stilled. Before the spraying there had been a rich assortment of the water life that forms the food of salmon and troutâcaddis fly larvae, living in loosely fitting protective cases of leaves, stems or gravel cemented together with saliva, stonefly nymphs clinging to rocks in the swirling currents, and the wormlike larvae of blackflies edging the stones under riffles or where the stream spills over steeply slanting rocks. But now the stream insects were dead, killed by the DDT, and there was nothing for a young salmon to eat.
Amid such a picture of death and destruction, the young salmon themselves could hardly have been expected to escape, and they did not. By August not one of the young salmon that had emerged from the gravel beds that spring remained. A whole year's spawning had come to nothing. The older young, those hatched a year or more earlier, fared only slightly better. For every six young of the 1953 hatch that had foraged in the stream as the planes approached, only one remained. Young salmon of the 1952 hatch, almost ready to go to sea, lost a third of their numbers.
All these facts are known because the Fisheries Research Board of Canada had been conducting a salmon study on the Northwest Miramichi since 1950. Each year it had made a census of the fish living in this stream. The records of the biologists covered the number of adult salmon ascending to spawn, the number of young of each age group present in the stream, and the normal population not only of salmon but of other species of fish inhabiting the stream. With this complete record of prespraying conditions, it was possible to measure the damage done by the spraying with an accuracy that has seldom been matched elsewhere.
The survey showed more than the loss of young fish; it revealed a serious change in the streams themselves. Repeated sprayings have now completely altered the stream environment, and the aquatic insects that are the food of salmon and trout have been killed. A great deal of time is required, even after a single spraying, for most of these insects to build up sufficient numbers to support a normal salmon populationâtime measured in years rather than months.
The smaller species, such as midges and blackflies, become re-established rather quickly. These are suitable food for the smallest salmon, the fry only a few months old. But there is no such rapid recovery of the larger aquatic insects, on which salmon in their second and third years depend. These are the larval stages of caddis flies, stoneflies, and mayflies. Even in the second year after DDT enters a stream, a foraging salmon parr would have trouble finding anything more than an occasional small stonefly. There would be no large stoneflies, no mayflies, no caddis flies. In an effort to supply this natural food, the Canadians have attempted to transplant caddis fly larvae and other insects to the barren reaches of the Miramichi. But of course such transplants would be wiped out by any repeated spraying.
The budworm populations, instead of dwindling as expected, have proved refractory, and from 1955 to 1957 spraying was repeated in various parts of New Brunswick and Quebec, some places being sprayed as many as three times. By 1957, nearly 15 million acres had been sprayed. Although spraying was then tentatively suspended, a sudden resurgence of budworms led to its resumption in 1960 and 1961. Indeed there is no evidence anywhere that chemical spraying for budworm control is more than a stopgap measure (aimed at saving the trees from death through defoliation over several successive years), and so its unfortunate side effects will continue to be felt as spraying is continued. In an effort to minimize the destruction of fish, the Canadian forestry officials have reduced the concentration of DDT from the ½ pound previously used to ¼ pound to the acre, on the recommendation of the Fisheries Research Board. (In the United States the standard and highly lethal pound-to-the-acre still prevails.) Now, after several years in which to observe the effects of spraying, the Canadians find a mixed situation, but one that affords very little comfort to devotees of salmon fishing, provided spraying is continued.
A very unusual combination of circumstances has so far saved the runs of the Northwest Miramichi from the destruction that was anticipatedâa constellation of happenings that might not occur again in a century. It is important to understand what has happened there, and the reasons for it.
In 1954, as we have seen, the watershed of this branch of the Miramichi was heavily sprayed. Thereafter, except for a narrow band sprayed in 1956, the whole upper watershed of this branch was excluded from the spraying program. In the fall of 1954 a tropical storm played its part in the fortunes of the Miramichi salmon. Hurricane Edna, a violent storm to the very end of its northward path, brought torrential rains to the New England and Canadian coasts. The resulting freshets carried streams of fresh water far out to sea and drew in unusual numbers of salmon. As a result, the gravel beds of the streams which the salmon seek out for spawning received an unusual abundance of eggs. The young salmon hatching in the Northwest Miramichi in the spring of 1955 found circumstances practically ideal for their survival. While the DDT had killed off all stream insects the year before, the smallest of the insectsâthe midges and blackfliesâhad returned in numbers. These are the normal food of baby salmon. The salmon fry of that year not only found abundant food but they had few competitors for it. This was because of the grim fact that the older young salmon had been killed off by the spraying in 1954. Accordingly, the fry of 1955 grew very fast and survived in exceptional numbers. They completed their stream growth rapidly and went to sea early. Many of them returned in 1959 to give large runs of grilse to the native stream.
If the runs in the Northwest Miramichi are still in relatively good condition this is because spraying was done in one year only. The results of repeated spraying are clearly seen in other streams of the watershed, where alarming declines in the salmon populations are occurring.
In all sprayed streams, young salmon of every size are scarce. The youngest are often "practically wiped out," the biologists report. In the main Southwest Miramichi, which was sprayed in 1956 and 1957, the 1959 catch was the lowest in a decade. Fishermen remarked on the extreme scarcity of grilseâthe youngest group of returning fish. At the sampling trap in the estuary of the Miramichi the count of grilse was only a fourth as large in 1959 as the year before. In 1959 the whole Miramichi watershed produced only about 600,000 smolt (young salmon descending to the sea). This was less than a third of the runs of the three preceding years.
Against such a background, the future of the salmon fisheries in New Brunswick may well depend on finding a substitute for drenching forests with DDT.
The eastern Canadian situation is not unique, except perhaps in the extent of forest spraying and the wealth of facts that have been collected. Maine, too, has its forests of spruce and balsam, and its problem of controlling forest insects. Maine, too, has its salmon runsâa remnant of the magnificent runs of former days, but a remnant hard won by the work of biologists and conservationists to save some habitat for salmon in streams burdened with industrial pollution and choked with logs. Although spraying has been tried as a weapon against the ubiquitous budworm, the areas affected have been relatively small and have not, as yet, included important spawning streams for salmon. But what happened to stream fish in an area observed by the Maine Department of Inland Fisheries and Game is perhaps a portent of things to come.