Secret Weapons (23 page)

Read Secret Weapons Online

Authors: Brian Ford

Tags: #Secret Weapons: Death Rays, #Doodlebugs and Churchill’s Golden Goose

BOOK: Secret Weapons
7.52Mb size Format: txt, pdf, ePub

The most important medical research in the wartime United States was purely beneficial, however. It brought penicillin into widespread use for the treatment of bacterial infections and this launched the present-day era of antibiotic therapy. The antibiotics had been discovered in England, but little had been done by the British to realize their potential as an agent of treatment. It was American enterprise and scientific skill that would bring this from a laboratory curiosity into a therapeutic agent that would save countless millions of lives.

BRITISH DOCTORS AT WAR

The British were among the nations that, when war broke out, had large stockpiles of chemical weapons ready for use. Germany and the Allies both knew how poison gases had been a dominant factor in World War I, and each played a waiting game with the other. Undoubtedly there would have been no reluctance to use these dreadful devices, if the other side had done so first. The only reason gas war did not break out was because of this tactical stalemate; it was not because of principle. From the outbreak of war, the British were all equipped with gas masks and were told to keep them handy. Just as present-day youngsters carry a lunchbox to school, children in wartime Britain ran to school clutching their gas masks in their hands. There were regular drills in how to use them, and practices of mustering in the air-raid shelters hastily constructed in the school yard, every week. The threat of these secret weapons was ever present.

Although British research during World War II was aimed partly at offensive action, through the study of the latest bacteriological and chemical secret weapons, there was also a strong undercurrent of defensive research though the development of new drugs, of which penicillin proved to be the most important.

The principal research activity into biological and chemical warfare has long been based at Porton Down, near Salisbury, Wiltshire. It was established in 1915 as a laboratory to investigate a response to German chemical weapons, and remains a top-secret facility. Officially known as the Defence Science and Technology Laboratory, it is an agency of the Ministry of Defence. It covers 7,000 acres (2,800 hectares) and also houses the Centre for Emergency Preparedness and Response. Some science-based companies are now also active in the area.

After World War I, a committee had been set up to determine what Britain should do about chemical and biological warfare, and the research at Porton Down was prioritized. Funding was made available, and the establishment began to expand steadily. In 1922, there were 380 servicemen, 23 scientific and technical civil servants and 25 civilian staff acting as secretaries, administrators and clerks. By 1925 these civilians had doubled in number. In 1930, the British ratified the Geneva Protocol with an intriguing and important codicil – in renouncing the use of chemical and biological warfare agents, they reserved the right to use them ‘in retaliation’. Research during World War II focused on secret weapons containing mustard gas and phosgene. There was also a continued effort to perfect germ warfare, through biological agents like anthrax and
Clostridium botulinum
toxin.

A successful test of anthrax was carried out on the Scottish island of Gruinard in 1942, which the government purchased from the owners. Eighty sheep were shipped over to Gruinard and the secret weapons – bombs containing a particularly virulent strain of anthrax spores – were exploded nearby. Within days, the sheep began to die. These bacteria grow rapidly in the body and the blood vessels become clogged with a viscous growth that overwhelms the body. The tests were regarded as successful, though the results were pointless – if this were to be used against the German cities, they would be rendered totally uninhabitable, even by the Allies. In my view they would have been better advised to create an anti-anthrax vaccine first. Thus the island was declared officially off-limits and visits were banned, with the exception of masked and gowned bacteriologists from Porton Down who came to check contamination levels from time to time. From 1986 there was a concerted campaign, Operation
Dark Harvest
, designed to have the island cleared for human occupation. Hundreds of tons of formaldehyde were sprayed on the infected regions and the infected top-soil, containing surviving spores, was removed and incinerated. Some sheep were released on the island and carefully observed; all remained healthy. Finally, in 1990, the Junior Defence Minister Mr Michael Neubert went to Gruinard on an inspection tour, and declared it safe to visit. The warning signs were taken down and there have since been no cases of anthrax among the only permanent residents – a flock of sheep.

Later research at Porton Down concentrated on the German nerve gases tabun, sarin and soman which eventually gave rise to the development VX nerve poisons. This was the research that led to the death from sarin experimentally administered to a young volunteer in 1953. The establishment, which still exists to this day, is now shrouded in secrecy, but it is widely accepted that the main focus of attention at the present time is the prevention and cure of disease and disability caused by possible new secret weapons.

The miracle drug

One of the greatest discoveries of twentieth-century medicine came from an obscure British researcher – yet it languished in obscurity until the urgent demands of World War II suddenly brought attention to bear on ways of treating wounded troops. This was penicillin, the first and most important of all the antibiotics. Although it was discovered by the British, it was the United States that took it from a laboratory curiosity with potential to a major new product for general use. The first famous observation of the anti-bacterial action of this wonder-drug was recorded by a Scottish doctor and Nobel Laureate, Sir Alexander Fleming. In 1928 he showed that the mould
Penicillium notatum
could be grown experimentally in broth, and the result was a liquid that could kill disease-causing bacteria.

Although Fleming was proud to be identified as the discoverer, articles discussing the effects of this blue mould had been published as long ago as 1875, and a bacteriologist in Costa Rica named Clodomiro Twight had investigated the anti-bacterial effects of these fungi during World War I. He was not the first person to investigate
Penicillium notatum
, either; that fungus had been named in 1911 by a Scandinavian scientist who discovered it growing on a pile of decaying hyssop (a medicinal herb). Fleming noticed that the broth in which this
Penicillium
had been grown could kill bacteria, but he did not try to use it to cure disease. A young (and largely forgotten) young doctor named Cecil Paine, who worked in the pathology department of the Royal Infirmary in Sheffield, Yorkshire, read about Fleming’s observations and grew the fungus himself. He found it could cure an eye infection in newborn babies. During 1930 he treated several patients with eye infections, young and old, wrote up the notes, and – like Fleming – forgot all about it. So Fleming was not the first person to discover the fungus, not the first to describe its effects nor even the first to use it to cure an infection. Why was he regarded as crucially important?

The onset of the war provides the answer. There was now a need to find a super-drug – something that could cure the overwhelming bacterial infections that would take the lives of so many young soldiers, wounded in action and sent home from the front. An Australian scientist, Howard Florey, with a small team including Ernst Chain, Norman Heatley, J. Orr-Ewing and G. Sanders, began work on possible new anti-bacterial drugs at the Sir William Dunn School of Pathology at Oxford University. They had known of the early observations of fungi apparently killing bacteria, and contacted Fleming to ask if, by chance, he still had his original culture of the mould. He had kept it – and thus was able to provide the Oxford group with the source of their much-needed new drug. I knew Florey at Oxford, and found him to be an avuncular and quick-thinking man. He reminded me a little of the comedian Bob Hope in appearance. Another friend, Mrs Monica Dobell, had known Fleming when he was at the prime of his influence. ‘I thought he was an unconscionable little man,’ she told me. ‘Full of himself. He thought he was better than anyone, and said he’d saved the world.’

By 1942 penicillin had been extracted and purified, and this new drug was already being used in clinical trials that proved it to be effective against the common bacterial infections that were claiming young soldiers’ lives. Florey, Chain and Heatley discovered how to mass-produce the fungus in milk bottles, but this could never create the drug in large amounts. The use of penicillin in treating young wounded soldiers meant that the lives of amputees and others could now be saved, whereas they would almost certainly have been lost before. But it was in the United States, not Britain, that mass-production began. Research at the Northern Regional Research Laboratory at Peoria, showed that a common waste-product, corn-steep liquor, was the ideal growth medium for the fungus. A mouldy melon found in the market at Peoria, Illinois, turned out to provide the most potent source of penicillin yet discovered, and a chemical engineer named Margaret Rousseau showed how to grow it in massive amounts inside large fermentation tanks, something like making beer in a brewery.

By the time of the Allied invasion of Normandy in 1944, the United States had produced over two million doses of pure penicillin. The saving of life because of this spectacular progress was incalculable. Then, as the war drew to a close, Australia became the first nation to mass-produce penicillin for the general public, and Fleming, Florey and Chain were jointly awarded the 1945 Nobel prize in medicine and physiology. Although many bacteria quickly became resistant to the effect of penicillin administration, a number of semi-synthetic penicillins have since been developed, including Flucloxacillin and Amoxycillin. These are based on the original drug, but their molecules have been slightly modified to prevent their being inactivated by resistant bacteria.

We can reflect on the remarkable involvement of medicine and science in World War II. Much cruelty was meted out; unimaginable suffering and terrible torture was a feature of the conflict and it is hard, even now, to forgive. But the greatest legacy was the acceleration of top-secret research into a drug whose potential had been widely ignored. Penicillin, and the antibiotics that were subsequently discovered, revolutionized medicine. During the war it was a crucially important means of returning troops to the field of battle in record time, and once the war was over it brought hope to countless seriously ill patients. Its ability to return soldiers to the battle makes it a weapon in itself. This is a major legacy of World War II – and it brings some comfort to know that the lives saved through research on penicillin greatly outnumber those who died in wartime. Norman Heatley, whose work was so crucial to the discovery of penicillin, lived through it all; before passing away in 2004.

CHAPTER 6
DANGEROUS IDEAS

Some very dangerous ideas – ranging from the relatively small-scale to those of a world-changing significance – were put into play during World War II. Following her entry into the war, the United States played a role in many of them.

PEARL HARBOR ATTACKED

The attack by Japan on Pearl Harbor in December 1941 was the greatest single blow by a foreign power that the United States had ever experienced. It was also the single stimulus that brought the United States officially into World War II, and led to new and urgent secret weapons research. The Pearl Harbor raid has long been mythologized as an unprovoked and unforeseeable attack by a cruel, silent aggressor against an unsuspecting nation state peacefully going about its business. This is not entirely true. Although Japan had already acted aggressively within the Pacific region and had invaded Manchuria; the United States had repeatedly taken unilateral action against Japan. Worse still, the existence of Pearl Harbor as a probable target was already known to the United States authorities – but was kept a secret from the people of Hawaii. The Japanese aircraft were detected by radar, long before they arrived; but the young operators were told that the weak signals they were detecting were probably nothing important. American aircraft were expected: perhaps that’s what they were. In the event, nothing was done and the might of Japan could fall upon the United States.

Ever since the Victorian era, Japan had learnt from the West and had embarked upon rapid industrialization. Japan is unusual in possessing very few natural resources. Britain is also an off-shore nation of similar size (the two have often been compared) yet rests on massive reserves of coal and iron ore, with vast lakes of high-quality natural gas and petrochemicals under her seas. Japan has nothing in comparison, and needs to import to survive. In the decades before World War II, Japan had built up a strong military capability and used it to expand into parts of foreign countries like China and Korea. The Americans, meanwhile, had used their own growing military might to occupy areas in South-East Asia. The Treaty of Paris had given sovereignty of the Philippines and the island of Guam to the United States in 1898 which led to the widely forgotten war of 1899–1902. Americans have been in the area ever since. In many ways the stage was set long before 1941 for a struggle over who was the dominating power in the region.

Other books

Accidental Heiress by Nancy Robards Thompson
The Bible of Clay by Navarro, Julia
Paradise Alley by Kevin Baker
When We Kiss by Darcy Burke
Lifeforce by Colin Wilson
Bon Bon Voyage by Nancy Fairbanks