Polaris (16 page)

Read Polaris Online

Authors: Todd Tucker

BOOK: Polaris
7.38Mb size Format: txt, pdf, ePub

The professor nodded, and seemed to think it over. Another bee landed on the flower, and they again watched it collect pollen and take off, flying the same route as its sister.

“OK,” said the professor. “Let me show you a few things that might help.”

*   *   *

The path came out of the woods. At the edge of the clearing ahead was a wooden structure, looking much like a small road sign—although there were no roads anywhere near them, not even the sound of cars. Two scruffy graduate students stood by it, both with clipboards. Between them was a small video camera on a tripod, aimed directly at the board. As they got closer, Pete thought the board appeared to be moving.

Then he realized it was covered in thousands of bees.

“This is called a swarm board,” said the professor. “A swarm is group of bees that has left its hive. The swarm has but one job: to find a new location for a hive. And it's a life-or-death decision.” Bees came and went from the swarm, a cloud of them swirling around the buzzing mass. Pete had always pictured beekeepers draped in white, protective clothing, with pith helmets and protective face masks. But everyone present other than him seemed unbothered by the tens of thousands of stinging insects that undulated in a mass in front of them. Everyone was dressed like the professor, shorts and T-shirts, not even gloves to protect them.

“Are they looking for a new home right now?” asked Pete. “They don't look like they're doing anything.”

The professor nodded. “The swarm is made up of about ten thousand worker bees. Of that, the oldest, most experienced bees—about three hundred—become scouts. They go out, look for suitable locations, and come back and communicate the location to the swarm.” Pete wanted to get a better look at the swarm but didn't want to stick his face any closer.

“With the waggle dance?”

“Exactly,” said the professor. “But then they collectively decide, over a day or so, what the best location is.”

“And they get it right?”

“Always,” said the professor.

“What makes one location better than another?”

The professor nudged one of the grad students, who was staring into space. “Will, you tell him.”

“Height,” answered Will. “They want to be high off the ground so animals can't get into it. Ideally, they want a small entrance, also to keep predators away. And volume. The bigger the better.”

“Good!” said the professor, slapping him on the back. The professor was obviously brilliant, Pete knew from his credentials. But he also clearly enjoyed working with young people.

Suddenly a bee stung Pete on his forearm.

“Ouch!” he said, sweeping the dead bee away. It fell to the ground. The pain spread through his arm as he looked down at the small black stinger that still protruded from his skin. He plucked it out and looked at the painful red spot that the bee had given its life for.

The professor smiled. “OK, now you're really one of us!”

“You guys get stung too?”

“All the time,” said Will. “We're just used to it.”

Another bee landed on Pete's arm. He stayed perfectly still until it flew away.

“Feel like moving somewhere else?” said the professor.

“Sure,” said Pete.

“Let's go look at their potential homes.”

*   *   *

They walked back into the woods down another path, Pete occasionally rubbing his arm where he'd been stung. When they came into a clearing, Pete saw another wooden structure, this time a box. A lone grad student was sitting in a chair beside it, sheltered from the sun by a large multicolored umbrella. She was in a beach chair, relaxed, her long legs crossed.

“We have four boxes set up like this all around the woods,” said Healy. “They're all identical, except for size. One is forty liters, the others are fifteen.”

“This one?” said Pete, pointing.

“This one is not the forty-liter dream home,” said Healy. “This one is the small fixer-upper.”

“Do all the scouts look at all the sites?”

“No,” said Healy, “and this is what's fascinating. The same scouts will visit this site over and over, bring that information back to the swarm. But in their communications, which are always truthful, the swarm will choose the right site.”

“How do you know which scouts go to which site?” said Pete.

“I'll show you!” said Healy, and they marched forward.

The potential home was a small wooden box inside a three-sided shelter. But Pete couldn't tear his eyes away from the young woman in the beach chair.

“Pamela!” said Healy. “My star pupil.”

She rolled her eyes at the praise.

“Tell our guest what you are doing.…”

“Watching and waiting…” she said, making a dramatic flourish with her hand. She then leaned back in the chair, folded her arms, and waited for Pete to react. She was blond, and tall—he could tell, even with her sitting down, by the length of her tanned, athletic legs. She had piercing blue eyes that she trained on Pete without mercy. He could tell that she was used to paralyzing guys like him with a glance, enjoyed the sport of it. The professor, an experienced observer of all things living, recognized what was going on and was amused.

Suddenly, she leaned forward. A bee had landed on the sill of the box, in front of the small hole that was the entrance. As it wandered inside, Pamela placed a small net in front of the opening.

When the bee came out, it was trapped. She pulled it away and gripped the bee by its wings. With her free hand she took a tiny paint brush, the kind you might use on a model airplane, and painted a tiny yellow dot on the back of the bee. She released the bee, and it flew away. The entire operation had taken extraordinary delicacy.

“That's how we know, back at the swarm, which bees come from which box. Each has a different color.”

Pete felt pressure to say something, anything, to look intelligent, as Pamela leaned over to catch another scout bee that was leaving the hive.

“Doesn't that bother them?” he said. “Getting held and painted?”

“No,” she said brightly, looking up at him and waiting for the bee to enter the net. “They don't even know they've been caught.”

 

CHAPTER SEVENTEEN

Quality versus quantity is an ancient military debate. Is it better to have a few expensive weapons systems with exquisite capabilities, or vast quantities of less capable systems that can be thrown at the enemy en masse? Overwhelmingly, the history of combat teaches that quantity almost always wins over quality. Put three noisy, slow submarines against a quiet, modern submarine, and the slow submarines will probably win. Raise the ratio to 5:1, and the modern sub is doomed. It might shoot the first enemy, maybe even the second, but in doing so it will reveal its position and deplete its torpedoes. Similar logic can be applied to tanks, planes, and even platoons of infantrymen. This idea was first quantified in World War I by British military theorist Frederick Lanchester, who created Lanchester's law: all things being equal, a twofold increase in combat units will result in a fourfold increase in combat power.

World War II proved the truth of Lanchester's law again and again. The Germans produced better planes and tanks than the Allies. The Panzer and the Stuka were superior to anything the Allies could put together, especially early in the war. But the Allies' sheer quantity, driven primarily by American manufacturing might, overwhelmed any German advantage. By 1944, the Allies were producing a ship every day, and a plane, incredibly, every five minutes. The Russians, too, always believers in the power of numbers, outmanufactured their enemies to the point that any German technological advantage was negated. The spectacle of the Soviet May Day parade was an annual manifestation of this philosophy, endless columns of men and munitions. Stalin summed it up memorably with his quote: “Quantity has a quality of its own.”

After World War II, however, the United States backed away from this proven philosophy. Unable to produce either vast quantities of arms or massive standing armies, due to both political and budgetary limitations, the United States banked on its technological prowess. The result was fewer and fewer platforms of ever-increasing power. This was true across all branches, as the Pentagon procured ever-more-expensive tanks, submarines, and airplanes. In a vicious cycle, as the cost of each platform went up, the number of them procured went down. Norman Augustine, former under secretary of the Army, theorized only partially tongue-in-cheek that by 2054, at the historic rate of increase, the entire US defense budget would be used to procure a single airplane. He suggested that it be used three and a half days a week each by the Navy and the Air Force, with the Marine Corps getting it once every leap year.

Study after study, and war game after war game, showed the preeminence of quantity over quality. A 2009 RAND study about an air war with China over the Strait of Taiwan speculated that the newest US plane, the F-22, was twenty-seven times more capable than the Chinese plane. The study further assumed that the F-22's missiles, eight per plane, would be 100 percent effective, every one of them finding and destroying a Chinese plane. No matter. In the study, the Chinese launched eight hundred sorties of their vastly inferior jets on the first day and won the battle easily. But still the United States went on buying its incredibly complex, incredibly expensive, and incredibly scarce weapons platforms while their enemies built weapons that were more crude, but infinitely more deadly because of their sheer numbers.

The advent of drones and the escalation of the Typhon threat forced the United States and her allies to reconsider. Unmanned craft could allow the United States to leverage huge quantities of munitions without putting millions of men in uniform. American manufacturing once again asserted itself, manufacturing thousands upon thousands of simple, low-cost drones. No single system in the drones was revolutionary; it was all tested and relatively low-cost technology. Each flew with relatively few sensors, a single bomb, and an elegantly reliable power plant. A single drone was not a formidable opponent; it was never designed to be. But hundreds of drones were terrifying. A swarm of thousands was unstoppable.

Teaching the drones the language of the bees proved the final piece of the puzzle. While it was by no means easy, Pete could see from the outset that it would work. He soon recruited many of the world's greatest apiculture experts, although not Professor Healy himself, who seemed immune to the Alliance's generous offers of support. Pamela, too, stayed at Cornell, but Pete saw her often when he visited the campus to pursue the mysteries of the bees' language.

Soon they had converted the entire language of the bees into a grammar, and that into logic that they could program into the drones. It was an extraordinarily rich language, Pete found, and one that suited their purposes perfectly. Like the bees, his drones were all identical; they shared a complete unity of purpose, and they were making life-or-death decisions. They soon taught the drones to communicate with each other clearly, without radio signals of any kind, just with the motion of their flight. Where the bees sought sources of pollen and debated new sites for their hive, the drones sought targets, and prioritized the biggest and best of them before swarming upon them and killing them.

Pete first trained two drones to talk to each other at the Atlantic Test Ranges, one drone finding another so they could coordinate an attack on a target being towed by a Navy destroyer. Two months later, a swarm of twenty drones performed flawlessly at the Atlantic Test Ranges, taking down three remote-controlled ships and penetrating a cloud of countermeasures.

In parallel with the test flights, Pete scouted locations for the Pacific drone station. The ideal spot would be located centrally, would have at least three hundred days of sunshine a year, and would be isolated, so that no one would become curious as they constructed the airfield. It seemed like fate when he found Eris Island, an obscure medical research station that was already part of the federal inventory.

Pete suddenly found himself speaking to groups of Navy admirals. Seabees would land on Eris and construct his airfield. The second group focused on hurriedly transforming the entire Pacific fleet into a submerged force. The submarine construction program accelerated, and plans were made to route surface ships to the other side of the world. If Pete's drones worked as he promised they would, submarines would soon be the only ship that could safely cross the sea.

*   *   *

Pete Hamlin walked through the rows of drones at Eris Island. He took a deep breath and contemplated the culmination of all his work: years of solitary research, followed by his modest research program, followed by the frenzy that came with the war and the Alliance's pressing needs. Just one year had passed since he'd discovered the language of the bees at Cornell, the final piece of the puzzle that made the whole system work. Since then, his drones had behaved like bees in ways beyond their language. Like a swarm of bees, the drones had found the ideal home, landed their scouts, and multiplied prodigiously.

Pete admired the perfect, parallel rows of drones as he walked between them, but he knew that order would soon be gone. Randomness was an important component of their every algorithm, in the air and on the landing field where they would refuel, soaking up the island's dependable sun, and rearm by ingesting bombs from the magazines that surrounded them. Randomness made them harder to track, harder to shoot, harder to predict. It was what military planners called a “force multiplier.” If the enemy didn't know precisely where each drone would be, they would have to plan for them to be in multiple places at multiple times, magnifying the drones' effectiveness. Soon they would be scattered randomly across the airfield and in the sky, in a pattern that was never a pattern—impossible to predict, shoot down, or counteract.

Other books

Urgent Care by C. J. Lyons
The Iron Palace by Morgan Howell
Clandara by Evelyn Anthony
Untamed (Untamed #1) by Green, Victoria, Reese, Jinsey
Woodsburner by John Pipkin
One Hot Daddy-To-Be? by Christenberry, Judy