Read Men of Mathematics Online
Authors: E.T. Bell
As mathematicians often have a liking for music it is of interest to note here that Weierstrass, broad as he was, could not tolerate music in any form. It meant nothing to him and he did not pretend that it did. When he had become a success his solicitous sisters tried to get him to take music lessons to make him more conventional socially, but after a halfhearted lesson or two he abandoned the distasteful project. Concerts bored him and grand opera put him to sleepâwhen they could drag him out to either.
Like his good father, Karl was not only an idealist but was also extremely practicalâfor a time. In addition to capturing most of the prizes in purely impractical studies he secured a paying job, at the age of fifteen, as accountant for a prosperous female merchant in the ham and butter business.
All of these successes had a disastrous effect on Karl's future. Old Weierstrass, like many parents, drew the wrong conclusion from his son's triumphs. He “reasoned” as follows. Because the boy has won a cartload of prizes, therefore he must have a good mindâthis much may be admitted; and because he has kept himself in pocket money by posting the honored female butter and ham merchant's books efficiently, therefore he will be a brilliant bookkeeper. Now what is the acme of all bookkeeping? Obviously a government nestâin the higher branches of courseâin the Prussian civil service. But to prepare for
this exalted position, a knowledge of the law is desirable in order to pluck effectively and to avoid being plucked.
As the grand conclusion of all this logic, paterfamilias Weierstrass shoved his gifted son, at the age of nineteen, headfirst into the University of Bonn to master the chicaneries of commerce and the quibblings of the law.
Karl had more sense than to attempt either. He devoted his great bodily strength, his lightning dexterity and his keen mind almost exclusively to fencing and the mellow sociability that is induced by nightly and liberal indulgence in honest German beer. What a shocking example for ant-eyed Ph.D.'s who shrink from a spell of school-teaching lest their dim lights be dimmed forever! But to do what Weierstrass did, and get away with it, one must have at least a tenth of his constitution and not less than one tenth of one percent of his brains.
Bonn found Weierstrass unbeatable. His quick eye, his long reach, his devilish accuracy, and his lightning speed in fencing made him an opponent to admire but not to touch. As a matter of historical fact he never was touched: no jagger scar adorned his cheeks, and in all his bouts he never lost a drop of blood. Whether or not he was ever put under the table in the subsequent celebrations of his numerous victories is not known. His discreet biographers are somewhat reticent on this important point, but to anyone who has ever contemplated one of Weierstrass' mathematical masterpieces it is inconceivable that so strong a head as his could ever have nodded over a half-gallon stein. His four misspent years in the university were perhaps after all well spent.
His experiences at Bonn did three things of the greatest moment for Weierstrass: they cured him of his father fixation without in any way damaging his affection for his deluded parent; they made him a human being capable of entering fully into the pathetic hopes and aspirations of human beings less gifted than himselfâhis pupilsâand thus contributed directly to his success as probably the greatest mathematical teacher of all time; and last, the humorous geniality of his boyhood became a fixed life-habit. So the “student years” were not the loss his disappointed father and his fluttering sistersâto say nothing of the panicky Peterâthought they were when Karl returned, after four “empty” years at Bonn, without a degree, to the bosom of his wailing family.
There was a terrific row. They lectured himâ“sick of body and soul” as he was, possibly the result of not enough law, too little mathematics, and too much beer; they sat around and glowered at him and, worst of all, they began to discuss him as if he were dead: what was to be done with the corpse? Touching the law, Weierstrass had only one brief encounter with it at Bonn, but it sufficed: he astonished the Dean and his friends by his acute “opposition” of a candidate for the doctor degree in law. As for the mathematics at Bonnâit was inconsiderable. The one gifted man, Julius Plücker, who might have done Weierstrass some good was so busy with his manifold duties that he had no time to spare on individuals and Weierstrass got nothing out of him.
But like Abel and so many other mathematicians of the first rank, Weierstrass had gone to the masters in the interludes between his fencing and drinking: he had been absorbing the Celestial Mechanics of Laplace, thereby laying the foundations for his lifelong interest in dynamics and systems of simultaneous differential equations. Of course he could get none of this through the head of his cultured, petty-official father, and his obedient brother and his dismayed sisters knew not what the devil he was talking about. The fact alone was sufficient: brother Karl, the genius of the timorous little family, on whom such high hopes of bourgeois respectability had been placed, had come home, after four years of rigid economy on father's part, without a degree.
At lastâafter weeksâa sensible friend of the family who had sympathized with Karl as a boy, and who had an intelligent amateur's interest in mathematics, suggested a way out: let Karl prepare himself at the neighboring Academy of Münster for the state teachers' examination. Young Weierstrass would not get a Ph.D. out of it, but his job as a teacher would provide a certain amount of evening leisure in which he could keep alive mathematically provided he had the right stuff in him. Freely confessing his “sins” to the authorities, Weierstrass begged the opportunity of making a fresh start. His plea was granted, and Weierstrass matriculated on May 22, 1839 at Münster to prepare himself for a secondary school-teaching career. This was a most important stepping stone to his later mathematical eminence, although at the time it looked like a total rout.
What made all the difference to Weierstrass was the presence at Münster of Christof Gudermann (1798-1852) as Professor of Mathe
matics. Gudermann at the time (1839) was an enthusiast for elliptic functions. We recall that Jacobi had published his
Fundamenta nova
in 1829. Although few are now familiar with Gudermann's elaborate investigations (published at the instigation of Crelle in a series of articles in his
Journal),
he is not to be dismissed as contemptuously as it is sometimes fashionable to do merely because he is outmoded. For his time Gudermann had what appears to have been an original idea. The theory of elliptic functions can be developed in many different waysâtoo many for comfort. At one time some particular way seems the best; at another, a slightly different approach is highly advertised for a season and is generally regarded as being more chic.
Gudermann's idea was to base everything on the
power series
expansion of the functions. (This statement will have to do for the moment; its meaning will become clear when we describe one of the leading motivations of the work of Weierstrass.) This really was a good new idea, and Gudermann slaved over it with overwhelming German thoroughness for years without, perhaps, realizing what lay behind his inspiration, and himself never carried it through. The important thing to note here is that Weierstrass made the theory of power seriesâGudermann's inspirationâthe nerve of all his work in analysis. He got the idea from Gudermann, whose lectures he attended. In later life, contemplating the scope of the methods he had developed in analysis, Weierstrass was wont to exclaim, “There is nothing but power series!”
At the opening lecture of Gudermann's course on elliptic functions (he called them by a different name, but that is of no importance) there were thirteen auditors. Being in love with his subject the lecturer quickly left the earth and was presently soaring practically alone in the aether of pure thought. At the second lecture only one auditor appeared and Gudermann was happy. The solitary student was Weierstrass. Thereafter no incautious third party ventured to profane the holy communion between the lecturer and his unique disciple. Gudermann and Weierstrass were fellow Catholics; they got along splendidly together.
Weierstrass was duly grateful for the pains Gudermann lavished on him, and after he had become famous he seized every opportunityâthe more public the betterâto proclaim his gratitude for what Gudermann had done for him. The debt was not inconsiderable: it is not every professor who can drop a hint like the oneâpower series
representation of functions as a point of attackâwhich inspired Weierstrass. In addition to the lectures on elliptic functions, Gudermann also gave Weierstrass private lessons on “analytical spherics”âwhatever that may have been.
In
1841,
at the age of twenty six, Weierstrass took his examinations for his teacher's certificate. The examination was in two sections, written and oral. For the first he was allowed six months in which to write out essays on three topics acceptable to the examiners. The third question inspired a fine dissertation on the Socratic method in secondary teaching, a method which Weierstrass followed with brilliant success when he became the foremost mathematical teacher of advanced students in the world.
A teacherâat least in higher mathematicsâis judged by his students. If his students are enthusiastic about his “beautifully clear lectures,” of which they take copious notes, but never do any original mathematics themselves after getting their advanced degrees, the teacher is a flat failure as a university instructor and his proper sphereâif anywhereâis in a secondary school or a small college where the aim is to produce tame gentlemen but not independent thinkers. Weierstrass' lectures were models of perfection. But if they had been nothing more than finished expositions they would have been pedagogically worthless. To perfection of form Weierstrass added that intangible something which is called inspiration. He did not rant about the sublimity of mathematics and he never orated; but somehow or another he made creative mathematicians out of a disproportionately large fraction of his students.
The examination which admitted Weierstrass after a year of probationary teaching to the profession of secondary school work is one of the most extraordinary of its kind on record. One of the essays which he submitted must be the most abstruse production ever accepted in a teachers' examination. At the candidate's request Gudermann had set Weierstrass a real mathematical problem: to find the power series developments of the elliptic functions. There was more than this, but the part mentioned was probably the most interesting.
Gudermann's report on the work might have changed the course of Weierstrass' life had it been listened to, but it made no practical impression where it might have done good. In a postscript to the official report Gudermann states that “This problem, which in general would be far too difficult for a young analyst, was set at the candidate's
express request with the consent of the commission.” After the acceptance of his written work and the successful conclusion of his oral examination, Weierstrass got a special certificate on his original contribution to mathematics. Having stated what the candidate had done, and having pointed out the originality of the attack and the novelty of some of the results attained, Gudermann declares that the work evinces a fine mathematical talent “which, provided it is not frittered away, will inevitably contribute to the advancement of science. For the author's sake and that of science it is to be desired that he shall not become a secondary teacher, but that favorable conditions will make it possible for him to function in academic instruction. . . . The candidate hereby enters by birthright into the ranks of the famous discoverers.”
These remarks, in part underlined by Gudermann, were very properly stricken from the official report. Weierstrass got his certificate and that was all. At the age of twenty six he entered his trade of secondary teaching which was to absorb nearly fifteen years of his life, including the decade from thirty to forty which is usually rated as the most fertile in a scientific man's career.
His work was excessive. Only a man with iron determination and a rugged physique could have done what Weierstrass did. The nights were his own and he lived a double life. Not that he became a dull drudge; far from it. Nor did he pose as the village scholar absorbed in mysterious meditations beyond the comprehension of ordinary mortals. With quiet satisfaction in his later years he loved to dwell on the way he had fooled them all; the gay government officials and the young officers found the amiable school teacher a thoroughly good fellow and a lively tavern companion.
But in addition to these boon companions of an occasional night out, Weierstrass had another, unknown to his happy-go-lucky fellows â¢âAbel, with whom he kept many a long vigil. He himself said that Abel's works were never very far from his elbow. When he became the leading analyst in the world and the greatest mathematical teacher in Europe his first and last advice to his numerous students was “Read Abel!” For the great Norwegian he had an unbounded admiration undimmed by any shadow of envy. “Abel, the lucky fellow!” he would exclaim: “He has done something everlasting! His ideas will always exercise a fertilizing influence on our science.”
The same might be said for Weierstrass, and the creative ideas
with which he fertilized mathematics were for the most part thought out while he was an obscure schoolteacher in dismal villages where advanced books were unobtainable, and at a time of economic stress when the postage on a letter absorbed a prohibitive part of the teacher's meagre weekly wage. Being unable to afford postage, Weierstrass was barred from scientific correspondence. Perhaps it is as well that he was: his originality developed unhampered by the fashionable ideas of the time. The independence of outlook thus acquired characterized his work in later years. In his lectures he aimed to develop everything from the ground up in his own way and made almost no reference to the work of others. This occasionally mystified his auditors as to what was the master's and what another's.