Lone Survivors (31 page)

Read Lone Survivors Online

Authors: Chris Stringer

BOOK: Lone Survivors
7.07Mb size Format: txt, pdf, ePub

The 454 Life Sciences company recently developed new instruments that allowed around 250,000 DNA strands to be sequenced in about five hours on one machine, and thus running several machines in tandem gave phenomenal improvements in recovery and recognition of the 3 billion pairs of chemical bases that originally made up the genome of these Neanderthal individuals. The 454 technique uses “shotgun” sequencing, in which DNA is chopped into huge numbers of short segments, and it is thus ideally suited for the tiny fragments of nuclear DNA required for ancient genome reconstruction. The old PCR technique was really only suitable for looking at longer fragments, such as in Pääbo's early Neanderthal mtDNA work, but a development by the researcher Paul Brotherton and his colleagues called
SPEX
(
single primer extension
) now also holds great promise for the recovery of small fragments of the Neanderthal genome, in a more targeted approach than that of 454 analysis.

Genomic DNA in one of the El Sidrón individuals and another Neanderthal from Monti Lessini in Italy is providing some of our first glimpses of the constitution of southern European Neanderthals. They had mutations in the structure of a pigmentation gene, MC1R, which would have been expressed in red hair and pale skin, and despite the media reeling out a number of celebrities and sports stars with “ginger” hair, saying they were all “Neanderthals,” the more interesting story is that the Neanderthal variant was, in fact, distinct from that found in people of European descent today. Lighter pigmentation in humans has probably evolved for several reasons, but these include facilitating the synthesis of vitamin D in our skin under northern conditions of reduced sunlight. That at least some Neanderthals evolved their own depigmentation is not surprising when we consider that they were living in Europe for hundreds of millennia before modern humans did. What is surprising, though, is that if there was significant interbreeding between moderns and Neanderthals in Europe, potentially advantageous genes for lighter skin did not spread from them to us—and other research suggests that some of the gene variants that produce the light skin of many Europeans are probably less than 15,000 years old.

At least one of the El Sidrón Neanderthals had mixed genes at the TAS2R38 site, which in modern humans controls an ability to taste (or not taste) the bitter chemical phenylthiocarbamide (PTC). Related chemicals occur in leafy vegetables like Brussels sprouts and cauliflower, as well as in some poisonous plants, and it is possible that the tasting/nontasting dichotomy had evolved in more ancient humans as part of a balance between nutritional needs and detecting the danger inherent in some bitter and poisonous plants. At least two El Sidrón individuals also shared another genetic system with some of us, in the form of blood group O, which is coded on chromosome 9. The famous ABO blood groups are distinguished by the presence or absence of particular antigens on the surface of red blood cells, which give resistance to different diseases. In blood group O, a mutation blocks the action of an enzyme that produces the A and B antigens, and while this might seem to be disadvantageous, some disease agents actually lock on to the antigens, so that lacking them can confer an advantage. Chimps also have the ABO system, although group O is less common in them, so it seems likely that the system is a shared inheritance between chimps, us, and Neanderthals, with different diseases constantly pruning the patterns of individuals with the most vulnerable blood types. As more Neanderthals are sequenced, we will be able to compare their frequencies with those of humans today.

Carles Lalueza-Fox and his colleagues ingeniously also used the circumstances of the El Sidrón site, where a possible Neanderthal family group had become fossilized, to provide a glimpse of their social structure. The three men had identical mtDNA sequences, while the three women each had different sequences (but were related to three of the children), so if this really was a family group, it implied that the males were closely related and had probably stayed in their natal group, while the females had joined from other bands. Such exchanges of mates (perhaps mostly, but not always, peaceable) are important in reducing inbreeding and suggest that females were the predominant agents of gene flow, and perhaps also of any cultural transmission, between Neanderthal groups. This social system is known as
patrilocality
and is the most common in modern hunter-gatherers, and seems to be yet another behavior shared between Neanderthals and moderns.

A more controversial finding in two of the El Sidrón people was the presence of a gene also found in modern humans called FOXP2, which has misleadingly been called “the language gene”—as though only one gene is likely to be involved in this very human faculty. In fact this developmental gene became known through a kind of reverse engineering, because when it malfunctions in humans it leads to inhibitions in the comprehension and production of language, both in brain pathways and in the physical control of muscles concerned with the production of speech. When the gene was sequenced and compared between other primates and humans, it was discovered that there were two unique mutations in the human version, which had presumably been selected to help facilitate our power of speech. Further research showed that it is at work in several areas of the brain concerned with cognition and language, and the human version of FOXP2 regulates (amplifies or moderates) the activities of more than a hundred other genes, whereas the “ancestral” version found in chimps has no such effect.

Our special version of the gene is not just about language, but it certainly does seem to be implicated in establishing neural pathways and the anatomical structures for speech. Thus there was speculation about whether Neanderthals would have possessed these same mutations, or, if lacking them, may also have lacked the capabilities of speech. The first drafts of the Neanderthal genome seemed to show the presence of the human form of FOXP2, but there were concerns even among the research team that this might be as a result of contamination from recent human DNA. However, the discovery of the “advanced” version in the carefully screened El Sidrón individuals seems to confirm its presence in these Spanish Neanderthals. So does this mean the Neanderthals must have had fully modern language? In my opinion, it does not, any more than the fact that the hyoid bones which sat in their throats were similar in shape to our own. But what is indicated is that we have no reason—from these elements of their biology—to deny them the potential for modern human speech capabilities. Whether they actually had our language abilities would also have depended on their own evolutionary pathway in behavioral complexity and the structure of the brain and vocal apparatus, as well as any evolutionary constraints that might have been at work from their distinctive anatomy.

An even more controversial issue than the presence or absence of the “modern” version of the FOXP2 gene in Neanderthals is whether they had a particular version of the MCPH1, or microcephalin, gene. In another case of reverse engineering, the action of this gene in humans became known through occasional failures in fetal development, where mutant versions seemed to be related to microcephaly (having an abnormally small head and brain). In such cases the faulty microcephalin gene apparently interfered with instructions for the production of neurons in the forebrain, leading to later deficits in the cerebral cortex. There are two main variants today, one most common globally (type D) and the other prevalent in sub-Saharan Africans (“non-D”). The genetic history of these two types appears to be quite distinct: while non-D seems to have developed in Africa and spread from there with the dispersal of modern humans, D has only proliferated in modern humans in the last 40,000 years, suggesting it has been selected as advantageous in at least some regions or situations. Yet the mutations in the genes show that these two types of microcephalin have deep and separate common roots going back over a million years, so where could the “new” D variant have come from? Attention focused on the Neanderthals as a possible source, implying that modern humans outside of Africa could have acquired their “young” variant from the Neanderthals, but sadly for this hypothesis, genome sequencing so far has shown that the Vindija Neanderthals possessed the ancestral “African” version of the microcephalin gene. Moreover, further research cast doubt on the whole scenario by failing to confirm the hypothesis that the microcephalin gene is strongly implicated in brain development, quality, and intelligence in “normal” humans. But the case of microcephalin does raise the issue that while mtDNA, Y-chromosome, and most autosomal DNA strongly support a recent African origin and subsequent dispersal for our species, there are variants of some genes that suggest a more complex evolutionary history for
Homo sapiens
.

Just as recent human DNA has been used to estimate past population numbers for
Homo sapiens
, so the small amounts of Neanderthal DNA recovered so far have also been subject to similar analyses, with clear and rather negative implications for Neanderthal viability. The complete reconstructed mtDNA genomes of six Neanderthals from Germany, Spain, Croatia, and Russia differ at only fifty-five locations out of a total of more than 16,000 base pairs, which is far less mtDNA diversity than in modern humans, and only a tiny fraction of the variability found in great ape species today. Estimates of population size from these data put the effective population size of Neanderthals across Europe and western Asia as low as 3,500 breeding females, although, as we have seen, that could translate into a much larger total number of people. In addition, they seemed to harbor a relatively greater number of potentially damaging mutations, which could have affected the structure of their proteins, something that often comes with smaller population sizes. Given that these were late Neanderthals sampled across much of their wide range, we can see how they could have been a threatened species even without the destabilizing impact of the arrival of modern humans in their home territories.

The partial Neanderthal genomes produced in 2006 contained some contradictory data, and doubts were soon expressed about whether the results were affected by remaining contamination from modern human DNA. Further investigations showed that this was indeed so, perhaps as much as 15 percent in certain areas. But now a composite and nearly entire Neanderthal genome has been drafted, providing rich data that promise yet more insights into their biology, from eye color and hair type through to brain quality and language skills. An international team of more than fifty researchers reconstructed more than 3 billion bits of DNA coding, again predominantly from three small fragments of bone from the Croatian cave of Vindija. These represented female Neanderthals who died around 40,000 years ago, and they have now been immortalized through their DNA. The results still largely confirmed the Out of Africa thesis, the overall distinctiveness of the Neanderthals, and a separation time from our lineage of about 350,000 years. But when the new Neanderthal genome was compared with those of modern humans from different continents, the results produced an intriguing twist to our evolutionary story because the genomes of people from Europe, China, and New Guinea lay slightly closer to the Neanderthal sequence than did those of individuals from Africa. Thus if you are European, Asian, or New Guinean, you probably have a bit of Neanderthal in your makeup.

One explanation is that the ancestors of people in Europe, Asia, and New Guinea interbred with Neanderthals (or at least with a population that had a component of Neanderthal genes) in North Africa, Arabia, or the Middle East as they exited Africa about 60,000 years ago. That ancient human exodus may have involved only a few thousand people, so it would have taken the absorption of only a few Neanderthals into a group of
Homo sapiens
for the genetic effect—greatly magnified as modern human numbers exploded—to be felt tens of thousands of years later. The amount of Neanderthal genetic input is estimated to be about 2 percent overall, a surprisingly high figure to me and other adherents of Out of Africa, who thought that any slight traces of interbreeding would have disappeared in the intervening years. Moreover, subsequent examination of six thousand worldwide modern samples by geneticist Vania Yotova and colleagues has revealed that non-African X-chromosomes have as much as 9 percent of Neanderthal-derived DNA in one particular location. What any of the shared DNA does for us, if anything, remains to be determined, but that will certainly be a focus for the next stage of this fascinating research. Alongside the apparent transfer of Neanderthal DNA into some of us, the comparisons also revealed more than two hundred genetic changes that we share to the exclusion of Neanderthals and chimpanzees. Some of these are in genes involved in brain functions, the structure of the skull and skeleton, the skin and its associated organs (such as hair and sweat glands), energy functions, and sperm activity.

These breakthroughs come at a time when renewed claims have been made that Neanderthals and early modern humans (Cro-Magnons) interbred in Europe about 35,000 years ago. Both fossil and DNA data indicate that the Neanderthals were a distinct lineage from modern humans, but a closely related one, and, as I explained, the level of morphological difference in the skeleton is comparable to that in recent primates and fossil mammals that demarcate distinct species. However, closely related mammal species may still be able to hybridize, so this was certainly possible between Neanderthals and Cro-Magnons.

The anthropologist Clifford Jolly, who was my first teacher in paleoanthropology at University College, London, has made a special study of baboons and their relatives in Africa today, and these monkeys seem to represent distinct species groups in their appearance and behavior, yet when their DNA is analyzed, it is apparent that these “species” often exchange genes on at least a small scale, where they overlap geographically. As he said with reference to fossil human species such as the Neanderthals: “The message is to concentrate on biology, avoid semantic traps, and realize that any species-level taxonomy based on fossil material is going to be only an approximate reflection of real-world complexities.” I think we should certainly remember those wise words before we make any absolute statements about what might or might not have taken place if and when our forebears met the Neanderthals.

Other books

Can't Stop Loving You by Lynnette Austin
The Lammas Curse by Anna Lord
Last Call Lounge by Stuart Spears
Hiding From the Light by Barbara Erskine
Remember Me by Moore, Heather
Marked by Garrett Leigh