Introducción a la ciencia II. Ciencias Biológicas (33 page)

BOOK: Introducción a la ciencia II. Ciencias Biológicas
6.59Mb size Format: txt, pdf, ePub
ads

En realidad, en 1963, Cyril Ponnamperuma efectuó experiencias similares a aquellas de Miller, utilizando haces de electrones como fuente de energía, y descubrió que se formaba adenina. Junto con Ruth Mariner y Carl Sagan, añadió adenina a una solución de ribosa y, bajo la acción de la luz ultravioleta, se formó «adenosina», una molécula formada de adenina y ribosa unidas entre sí. Si también se hallaba presente el fosfato, éste se unía para formar el trifosfato de adenosina (TFA), que, como se indicó en el capítulo 12, es esencial para los mecanismos de intercambio de energía en los tejidos vivos. En 1965 se consiguió un «dinucleótido», es decir, dos cadenas juntas de nucleótidos. Pueden originarse productos adicionales, si sustancias tales como la cianamida (CNNH
2
) y el etano (CH
3
CH
3
) —sustancias que pueden muy bien haberse hallado presentes en la era primordial— se añaden a las mezclas empleadas por los diversos experimentadores en este campo. Así, pues, no existe realmente un problema, ya que las modificaciones químicas y físicas normales acaecidas en el océano y la atmósfera primordiales pueden haber actuado de tal modo que se elaboraran proteínas y ácidos nucleicos.

Cualquier compuesto formado en el océano sin vida tendería a permanecer en él y a acumularse. No existían organismos grandes o pequeños, que los consumieran o causaran su descomposición. Además, en la atmósfera original no existía oxígeno libre que oxidara o degradara las moléculas. Los únicos factores importantes que tendían a degradar las moléculas complejas habrían sido las muy intensas radiaciones ultravioleta y de origen radiactivo que las generaron. Pero las corrientes oceánicas podrían haber transportado gran parte del material a un puerto seguro, las profundidades medias en el mar, lejos de la superficie irradiada por los rayos ultravioleta y del suelo oceánico radiactivo. Además, Ponnamperuma y sus colaboradores han calculado que casi el 1 % del océano original puede haber estado constituido por esos compuestos orgánicos formados. Si así fuera, esto representaría una masa de más de mil billones de toneladas. Evidentemente, ésta es una cantidad importante para que las fuerzas naturales puedan operar en ella, y en tal enorme masa incluso sustancias de la máxima complejidad posible podrían haber sido elaboradas en un período de tiempo no demasiado largo (particularmente considerando que, para este fin, se dispone de dos mil millones de años). Por lo tanto, no existe una barrera lógica que impida suponer además que de los compuestos simples en el océano y la atmósfera primordiales surgieron con el tiempo, a concentraciones cada vez mayores, los aminoácidos más complicados, así como azúcares simples; aquellos aminoácidos se combinaron para formar péptidos; aquellas purinas, pirimidinas, azúcares y fosfato se combinaron para formar nucleótidos; y que, gradualmente, con el transcurso del tiempo, se crearon proteínas y ácidos nucleicos. Luego llegó el momento en que se alcanzó la fase decisiva: la formación, a través de una serie de combinaciones casuales, de una molécula de ácido nucleico capaz de inducir una replicación. Ese instante jalonó el comienzo de la vida.

Así, pues, un período de «evolución química» precedió a la evolución de la propia vida.

Al parecer, una simple molécula viva puede haber sido suficiente para iniciar la vida y dar origen a toda la amplia variedad de seres vivos, del mismo modo como una célula fertilizada puede dar origen a un organismo enormemente complejo. En la «sopa» orgánica que constituyó el océano en aquel entonces, las primeras moléculas vivas pudieron haber dado lugar por replicación a miles de millones de moléculas similares a ellas mismas en un breve período de tiempo. Mutaciones ocasionales pudieron crear formas ligeramente modificadas de la molécula, y aquellas que de algún modo fueron más eficaces que las restantes debieron multiplicarse a expensas de sus vecinas y remplazar a las formas «antiguas». Si un grupo fue más eficiente en el agua caliente y otro en el agua fría, se debieron originar dos variedades, cada una limitada al ambiente al que se adaptaba mejor. De este modo, debió ponerse en movimiento la «evolución orgánica».

Aún cuando al principio existieron independientemente varias moléculas vivas, es muy probable que la más eficiente desplazara a las otras, de tal modo que muy bien pueda haber ocurrido que la vida actual proceda de una única molécula original. A pesar de la presencia y gran diversidad de seres vivos, todos ellos se ajustan al mismo plan básico. Sus células poseen un metabolismo muy similar. Además es altamente significativo que las proteínas de todos los seres vivos estén constituidas por L-aminoácidos, en vez de por D-aminoácidos. Es posible que la nucleoproteína original, a partir de la que deriva toda la vida, estuviera casualmente constituida por L-aminoácidos, y dado que los D no podían asociarse con los L para formar una cadena estable, lo que comenzó por casualidad persistió por replicación hasta alcanzar una absoluta universalidad. (Esto implica que los D-aminoácidos se hallan ausentes en la Naturaleza. Existen en las paredes celulares de las bacterias y en algunos compuestos antibióticos. Sin embargo, éstos son casos realmente excepcionales.)

Las primeras células

Desde luego, el paso desde una molécula viviente al tipo de vida que conocemos hoy, es todavía inmenso. Exceptuando los virus, toda la vida está estructurada con células, y una célula, por muy pequeña que pueda parecer a escala humana, es enormemente compleja tanto por su estructura como por sus relaciones recíprocas. ¿Cuál fue el principio de esto? Las investigaciones del bioquímico norteamericano Sidney W. Fox han arrojado bastante luz sobre el problema planteado por el origen de las células. A él le parecía que la Tierra primigenia debió haber estado muy caldeada y que la energía del calor pudo haber sido suficiente para formar compuestos complejos a partir de los más simples. Deseando demostrarlo, Fox emprendió un experimento en 1958: calentó una mezcla de aminoácidos y observó que todos ellos formaban largas cadenas semejantes a las de las moléculas proteínicas. Las enzimas que engullían las proteínas ordinarias hicieron lo mismo con aquellos «proteinoides» y, por tanto, se los pudo utilizar como alimento de bacterias.

Lo más sorprendente fue esto: cuando Fox disolvió los proteinoides en agua caliente y dejó enfriar la solución, descubrió que todos ellos se agrupaban en diminutas «microsferas» cuyo tamaño era aproximadamente el de una bacteria pequeña. Aunque dichas microsferas no vivían, tal como se entiende usualmente este concepto, se comportaban igual que las células, al menos en ciertos aspectos (por ejemplo, las rodeaba una especie de membrana). Agregando determinados elementos químicos a la solución, Fox logró que las microsferas se hincharan y contrajeran tal como lo hacen las células ordinarias. Las microsferas echaron brotes que a veces parecieron crecer para romperse luego. También se separaron, se dividieron en dos, y se apiñaron formando cadenas.

Quizás en tiempos primarios esos minúsculos agregados de materias, sin vida propiamente dicha, constituyeran diversas variedades. Algunas serían especialmente ricas en ADN y excelentes para la réplica, aunque sólo tendrían una capacidad moderada para almacenar energía. Otros agregados manipularían bien la energía, pero darían réplicas tibias. A su debido tiempo, agrupaciones de tales agregados cooperarían entre sí, cada cual supliendo las deficiencias del otro hasta formar la célula moderna, un elemento mucho más eficiente que cualquiera de sus partes. Esa célula moderna tendría ya núcleo —rico en ADN, pero incapaz de manejar por sí solo el oxígeno— y numerosos mitocondrios con una notable disposición para manipular el oxígeno aunque incapaces de reproducirse en ausencia del núcleo. (Los mitocondrios pueden haber sido otrora entidades independientes, como lo demuestra el hecho de que poseen todavía pequeñas porciones de ADN.)

En realidad, en estos últimos años existe una tendencia creciente a sospechar que la atmósfera I no duró demasiado, y que la Atmósfera II ya estuvo presente casi al principio. Tanto Venus como Marte tienen Atmósfera II (dióxido de carbono y nitrógeno), por ejemplo; y la Tierra puede haber tenido asimismo una, en la ñepoca en que, al giual que Venus y Marte, no albergaba vida.

Esto no constituye un cambio fatal. Los compuestos simples pueden aún formarse con dióxido de carbono, vapor de agua y nitrógeno. El nitrógeno puede convertirse en óxidos de nitrógeno o en cianuro, o bien en amoníaco, por medio de la combinación del dióxido de carbono y agua, o de ambos, bajo la influencia tal vez de descargas de rayos; y los cambios moleculares podrían continuar hacia la vida bajo el azote de la luz solar y de otras fuentes de energía.

Células animales

Durante la existencia de las atmósferas I y II, las formas primitivas de vida pudieron existir solamente a fuerza de desintegrar sustancias químicas complejas en otras más simples y almacenar la energía desarrollada. Las sustancias complejas se reconstruyeron gracias a los efectos de la radiación ultravioleta solar. Una vez se formó totalmente la Atmósfera II y la capa ozónica ocupó el lugar asignado, se presentó el peligro de la inanición, pues entonces dio fin el suministro de radiación ultravioleta.

Sin embargo, por aquella época se formaron algunos agregados similares a los mitocondrios que contenían clorofila, la antecesora del moderno cloroplasto. En 1966, los bioquímicos canadienses G. W. Hodson y B. L Baker empezaron a trabajar con pirrol y paraformaldehído (los cuales se pueden formar empleando sustancias todavía más simples, como las utilizadas en los experimentos del tipo Miller) y demostraron que se formaban anillos de porfidina —la estructura básica de la clorofila— tras un mero caldeamiento suave de tres horas.

El ineficaz empleo de la luz visible por los primitivos agregados clorofílicos debe de haber sido incluso preferible al procedimiento de sistemas no clorofílicos durante el período formativo de la capa ozónica. La luz visible podría atravesar fácilmente el ozono, y su deficiente energía (comparada con la ultravioleta) bastaría para activar el sistema clorofílico.

Los primeros organismos que consumieron clorofila no habrán sido probablemente más complicados que los cloroplastos individuales de nuestros días. En realidad, un grupo de organismos unicelulares y fotosintetizadores denominados «algas verdiazules» cuenta con dos mil especies (aunque no todos sean verdiazules, sí lo fueron los primeros sometidos a estudio). Éstos son células muy simples, más bien se diría bacterias por su estructura si no contuvieran clorofila. Las algas verdiazules pueden haber sido los descendientes más elementales del cloroplasto original; por otra parte, las bacterias lo habrán sido de los cloroplastos que perdieron su clorofila y tendieron al parasitismo o se nutrieron de los tejidos muertos y sus componentes.

Cuando los cloroplastos se multiplicaron en los antiguos mares, el anhídrido carbónico se consumió gradualmente y el oxígeno molecular ocupó su lugar. Entonces se formó nuestra atmósfera, la Atmósfera III. Las células vegetales ganaron progresivamente eficiencia, cada una llegó a contener numerosos cloroplastos. Al propio tiempo, las células elaboradas sin clorofila no podrían haber existido sobre la base precedente, pues las células vegetales arrebataron a los océanos todas sus reservas alimenticias y éstas ya no se formaron más excepto dentro de dichas células. No obstante, las células sin clorofila pero con un elaborado equipo mitocondrial capaz de manejar eficientemente células complejas y almacenar la energía producida por su disgregación, pudieron haber vivido ingiriendo las células vegetales y despojando las moléculas que estas últimas habían construido laboriosamente. Así se originó la célula animal del presente día. A su debido tiempo los organismos adquirieron suficiente complejidad para dejar los vestigios fósiles (vegetales y animales) que conocemos actualmente.

Entretanto, el medio ambiente terrestre ha cambiado de forma radical, desde el punto de vista de la creación de nueva vida. La vida ya no puede originarse y desarrollarse merced a un proceso de evolución puramente química. Por un simple hecho, las formas de energía que la hicieron surgir en un principio —la energía de las radiaciones ultravioleta y de la radiactividad— han cesado prácticamente. Por otro lado, las formas de vida bien establecidas consumirían con gran rapidez cualquier molécula orgánica que se originara de forma espontánea. Por estas dos razones no existe virtualmente la posibilidad de un resurgimiento independiente de lo inanimado en lo animado (salvo por alguna futura intervención del ser humano, si llega alguna vez a descubrir el procedimiento). Hoy en día la generación espontánea es tan improbable, que puede ser considerada como básicamente imposible.

La vida en otros mundos

Si se acepta el punto de vista de que la vida se originó simplemente como expresión de las leyes físicas y químicas, se deduce que con toda probabilidad la vida no se halla limitada al planeta Tierra. ¿Cuáles son, por tanto, las posibilidades de vida en el Universo?

Cuando se reconoció pro primera vez que los planetas del Sistema Solar eran mundos, se dio por garantizado asimismo que albergaba en ellos la vida, incluso una vida inteligente. Constituyó una gran conmoción cuando se reconoció que la Luna carecía de aire y agua y que, por lo tanto, probablemente también carecía de vida.

En la era moderna de los cohetes y las sondas (véase capítulo 3), los científicos están más bien convencidos de que no existe vida en la Luna ni en cualquiera de los otros mundos del Sistema Solar interior, excepto en la misma Tierra.

Tampoco existen muchas probabilidades en lo referente al Sistema Solar exterior. En realidad, Júpiter tiene una profunda y compleja atmósfera con una temperatura muy baja en la capa de nubes visible y una elevada en el interior. En alguna parte de unas profundidades moderaras y con temperaturas también moderadas, y con presencia conocida de agua y compuesto orgánicos, resulta concebible (como sugiere Carl Sagan) que pueda existir la vida. Y si esto no es cierto en lo que se refiere a Júpiter, puede ser cierto asimismo respecto de los otros gigantes gaseosos.

Asimismo, el satélite joviano Europa constituye un mundo por completo helado, aunque, por degajo, podría existir un océano de agua calentada gracias a la influencia de las mareas de Júpiter. Titán posee una atmósfera de metano y nitrógeno, y podría tener también nitrógeno líquido y compuesto orgánicos sólidos en la superficie, lo cual puede decirse tal vez también de Tritón, el satélite de Neptuno. En esos tres satélites resulta concebible que pueda existir alguna forma de vida.

BOOK: Introducción a la ciencia II. Ciencias Biológicas
6.59Mb size Format: txt, pdf, ePub
ads

Other books

The Bass Wore Scales by Mark Schweizer
Ticket to Curlew by Celia Lottridge
Traveller by Abigail Drake
Mating Heat by Jenika Snow
What Friends Are For by Sylph, Jodi
An Inconvenient Trilogy by Audrey Harrison
Heart Fire (Celta Book 13) by Owens, Robin D.
Operation: Endgame by Christi Snow