Introducción a la ciencia II. Ciencias Biológicas (16 page)

BOOK: Introducción a la ciencia II. Ciencias Biológicas
2.23Mb size Format: txt, pdf, ePub
ads
La forma de la molécula de proteína

Con la molécula proteínica entendida, por así decirlo, como una hilera de aminoácidos, parecía conveniente obtener una visión aún más sofisticada. ¿Cuál era la manera exacta en que la cadena de aminoácidos se inclinaba y curvaba? ¿Cuál era la forma exacta de la molécula proteínica? Enfrascados en este problema se hallaban el químico austro-inglés Max Ferdinand Perutz y su colega inglés John Cowdery Kendrew. Perutz tomó como objeto de estudio la hemoglobina, la proteína de la sangre que transporta el oxígeno y que contiene unos 12.000 átomos. Kendrew estudió la mioglobina, una proteína muscular, similar en su función a la hemoglobina, pero sólo con una cuarta parte de su tamaño. Como herramienta utilizaron los estudios de difracción de los rayos X.

Perutz empleó el ardid de combinar las moléculas proteicas con un átomo pesado, como el del oro o el mercurio, átomo que era particularmente eficaz en difractar los rayos X. Esto les proporcionó algunas pistas, a partir de las que pudo deducir con más exactitud la estructura de la molécula, sin dicho átomo pesado. Hacia el año 1959, la mioglobina, y, un año más tarde, la hemoglobina, fueron dilucidadas estructuralmente. Fue posible preparar modelos tridimensionales en los cuales se situaba cada uno de los átomos en el lugar que parecía ser con mayor probabilidad el correcto. En ambos casos, la estructura proteica se basaba claramente en la helicoidal. Como resultado de sus investigaciones, Perutz y Kendrew compartieron el premio Nobel de Química de 1962.

Hay buenas razones para creer que las estructuras tridimensionales elaboradas mediante los procedimientos técnicos de Perutz-Kendrew, quedan determinadas al fin y al cabo por la naturaleza de los encadenamientos de aminoácidos. Las cadenas de aminoácidos tienen «puntos de repliegue», por así decirlo, y cuando se doblan sobrevienen inevitablemente ciertas interconexiones que las mantienen debidamente plegadas. Para determinar cuáles son esos pliegues e interconexiones es preciso calcular todas las distancias interatómicas y los ángulos que forman los eslabones de conexión. Esta tarea es realizable, pero extremadamente tediosa. Aquí se ha pedido también ayuda a las computadoras; éstas han realizado todos los cálculos y, por si fuera poco, han escrito el resultado en una pantalla.

Entre unas cosas y otras, la lista de moléculas proteínicas cuyas formas se conocen a escala tridimensional, está alargándose rápidamente. La insulina, iniciadora de los nuevos sondeos en la biología molecular, ha encontrado ya su forma tridimensional gracias a la bioquímica inglesa Dorothy Crowfoot Hodgkin (1969).

Enzimas

Por supuesto, existe una buena razón para justificar la complejidad y casi infinita variedad que manifiestan las moléculas proteicas. Las proteínas tienen una multiplicidad de funciones que cumplir en los organismos vivos.

Una de ellas, de cierta importancia, es constituir el armazón estructural del cuerpo. De la misma manera que la celulosa constituye el armazón de las plantas, así las proteínas fibrosas cumplen el mismo papel en los animales complejos. Las arañas producen los hilos de sus telas, y las larvas de insectos las hebras de sus capullos, en ambos casos gracias a las fibras proteicas. Las escamas de los peces y los reptiles están constituidas principalmente por la proteína denominada queratina. Los pelos, plumas, cuernos, pezuñas, garras y uñas de los dedos —todo ello simplemente escamas modificadas— también contienen queratina. La piel debe su resistencia y flexibilidad a su elevado contenido de queratina. Los tejidos de sostén internos —cartílago, ligamentos, tendones, e incluso el armazón orgánico de los huesos— están constituidos en gran parte por moléculas proteicas tales como el colágeno y la elastina. A su vez, el músculo está formado por una proteína fibrosa compleja denominada actomiosina.

En todos estos casos, las fibras proteicas son algo más que un simple sustitutivo de la celulosa. Representan un perfeccionamiento; son más resistentes y más flexibles. La celulosa podrá soportar una planta que no tenga que realizar más que el simple movimiento de doblarse bajo la acción del viento. Pero las fibras proteicas tienen la misión de plegar y flexionar los apéndices del cuerpo, debiendo estar adaptadas a movimientos rápidos, vibraciones, etc.

Sin embargo, las fibras se encuentran entre las proteínas más sencillas, tanto en su forma como en su función. La mayoría de las otras proteínas tienen funciones mucho más sutiles y complejas que realizar.

Para mantener la vida en todos sus aspectos, deben producirse numerosas reacciones químicas en el organismo. Éstas se producen a una velocidad elevada y con gran diversidad, hallándose además cada reacción íntimamente relacionada con las restantes, pues no es sólo una, sino de todas ellas conjuntamente, que dependen los fluidos procesos vitales. Además, todas las reacciones deben producirse en el más suave de los medios ambientes: sin altas temperaturas, reactivos químicos enérgicos o presiones elevadas. Las reacciones deben hallarse bajo un control estricto, y a la vez flexible, y deben ser constantemente ajustadas a las variables características del medio ambiente y a las distintas necesidades momentáneas del organismo. La indebida reducción de la velocidad o la aceleración de incluso una sola reacción, entre los muchos miles de ellas, desorganizaría más o menos gravemente al organismo.

Todo esto es realizado por las moléculas proteicas.

Catálisis

Hacia finales del siglo XVIII, los químicos, siguiendo las enseñanzas de Lavoisier, comenzaron a estudiar las reacciones químicas de forma cuantitativa; en particular para medir las velocidades a que se producían dichas reacciones.

Inmediatamente observaron que la velocidad de las reacciones podía ser drásticamente modificada por alteraciones pequeñas en comparación con el medio ambiente. Por ejemplo, cuando Kirchhoff descubrió que el almidón podía ser convertido en azúcar en presencia de ácido, apreció también que el ácido aceleraba considerablemente la reacción, aunque no se consumía en el proceso. Pronto se descubrieron otros ejemplos de este fenómeno. El químico alemán Johann Wolfgang Döbereiner halló que el platino finamente dividido (denominado negro de «platino») favorece la combinación del hidrógeno y el oxígeno para formar agua; una reacción que, sin esta ayuda, sólo tendría lugar a una temperatura elevada. Döbereiner diseñó incluso una lámpara que entraba automáticamente en ignición y en la que un chorro de hidrógeno, proyectado sobre una superficie revestida de negro de platino, provocaba la llama.

Debido a que las reacciones aceleradas procedían generalmente en el sentido de descomponer una sustancia compleja en una más simple, Berzelius denominó al fenómeno «catálisis» (de las palabras griegas que esencialmente significan «descomponer»). Así, el negro de platino fue designado como catalizador de la combinación del hidrógeno y el oxígeno, y el ácido como catalizador de la hidrólisis del almidón en glucosa. La catálisis ha resultado ser de la máxima importancia en la industria. Por ejemplo, la mejor manera de fabricar ácido sulfúrico (el producto químico inorgánico simple más importante, del mismo orden de significación que el aire, el agua y quizá la sal) implica la combustión del azufre, primero en dióxido de azufre (SO
2
) y luego en trióxido de azufre (SO
3
). La conversión de dióxido a trióxido se realizaría a la velocidad del caracol sin la ayuda de un catalizador tal como el negro de platino. El níquel finamente dividido (que ha remplazado al negro de platino en la mayor parte de los casos, debido a que es más barato), y compuestos tales como el cromito de cobre, el pentóxido de vanadio, el óxido férrico y el dióxido de manganeso también son importantes catalizadores. En realidad, gran parte del éxito de un proceso químico industrial depende de hallar el adecuado catalizador para la reacción en él involucrada. El descubrimiento por Ziegler de un nuevo tipo de catalizador revolucionó la producción de los polímeros.

¿Cómo es posible que una sustancia, algunas veces presente en concentraciones muy pequeñas, determine reacciones cuantitativamente importantes, sin que ella misma se altere?

Bien, en realidad parte del catalizador interviene en la reacción, pero haciéndolo en forma cíclica, de tal modo que continuamente vuelve a recuperar su naturaleza original. Un ejemplo lo constituye el pentóxido de vanadio (V
2
O
5
), que puede catalizar la transformación del dióxido de azufre en trióxido de azufre. El pentóxido de vanadio cede uno de sus oxígenos al SO
2
, formándose SO
3
y transformándose el mismo en el óxido de vanadilo (V
2
O
4
). Pero el óxido de vanadilo reacciona rápidamente con el oxígeno del aire y vuelve a formarse el V
2
O
5
Así, pues, el pentóxido de vanadio actúa como un intermediario, cediendo un átomo de oxígeno al dióxido de azufre, tomando otro a partir del aire, cediéndolo de nuevo a otra molécula de dióxido de azufre, y así sucesivamente. El proceso es tan rápido que una pequeña cantidad del pentóxido de vanadio será suficiente para determinar la conversión de grandes cantidades de dióxido de azufre. Y, al final, nos parecerá que el pentóxido de vanadio no ha experimentado modificación alguna.

En el año 1902, el químico alemán George Lunge sugirió que este tipo de proceso era la explicación de la catálisis en general. En 1916, Irving Langmuir avanzó un paso más y aportó una explicación para la acción catalítica de ciertas sustancias, tales como el platino, tan poco reactivas que no es de esperar que se hallen implicadas en reacciones químicas ordinarias. Langmuir sostuvo que el exceso de enlaces de valencia en la superficie del metal de platino escindiría las moléculas del hidrógeno y el oxígeno. Al entrar en íntimo contacto con la superficie de platino, las moléculas del hidrógeno y el oxígeno podrían combinarse mucho más fácilmente para formar moléculas de agua, que en su estado libre ordinario como moléculas gaseosas, y, una vez formada una molécula de agua, ésta sería desplazada de la superficie del platino por moléculas de hidrógeno y oxígeno. Así, el proceso de escisión del hidrógeno y el oxígeno, su combinación en agua, la liberación de ésta, la escisión de más hidrógeno y oxígeno, y la transformación de más agua continuaría de forma indefinida.

Este fenómeno se denomina «catálisis de superficie». Por supuesto, cuanto más finamente se halle dividido el metal, tanta más superficie ofrecerá una masa dada y con tanta mayor eficacia podrá producirse la catálisis. Por supuesto, si una sustancia extraña se une firmemente a los enlaces superficiales del platino, «envenenará» al catalizador.

Todos los catalizadores de superficie son más o menos selectivos o «específicos». Algunos absorben fácilmente moléculas de hidrógeno y catalizan reacciones en las que se halla implicado el hidrógeno; otros absorben con facilidad moléculas de agua y catalizan condensaciones o hidrólisis, etc.

La capacidad de las superficies para captar capas de moléculas («adsorción») la manifiestan muchas sustancias y puede aplicarse a otros usos distintos del de la catálisis. El dióxido de silicio preparado en forma esponjosa («gel de silicio») adsorberá grandes cantidades de agua. En el acondicionamiento del equipo electrónico, cuyo rendimiento sufriría sometido a condiciones de humedad elevada, actúa como «desecador», reduciendo la humedad al mínimo.

Por otra parte, el carbón finamente dividido («carbón activado») adsorberá con facilidad moléculas orgánicas; cuanto mayor sea la molécula orgánica, tanto más fácilmente será adsorbida. El carbón activado puede ser utilizado para decolorar soluciones, pues adsorberá las impurezas coloreadas (por lo general de peso molecular elevado) dejando sin adsorber a la sustancia deseada (por lo general incolora y de peso molecular comparativamente bajo).

El carbón activado también se ha utilizado en las máscaras antigás. Su uso ya fue previsto por el físico inglés John Stenhouse, quien por vez primera preparó un filtro de carbón para el aire en el año 1853. El oxígeno y el nitrógeno del aire pasan a través de una máscara de este tipo sin dificultad, pero son adsorbidas las moléculas relativamente grandes de los gases venenosos.

Fermentación

El mundo orgánico también posee sus catalizadores. En realidad, algunos de ellos se conocen desde hace miles de años, aunque no por el mismo nombre. Son tan antiguos como la fabricación del pan y la elaboración del vino. La masa de pan, abandonada a sí misma, y protegida de la contaminación de las influencias ambientales, no fermentará. Si se añade una pizca de «levadura» (de la palabra latina que significa «subir»), aparecerán burbujas, que hincharán la masa y la harán más ligera.

La levadura también acelera la conversión de los zumos de frutas y granos en alcohol. Aquí de nuevo, la conversión implica la formación de burbujas, de tal modo que el proceso se ha denominado «fermentación», a partir de la palabra latina que significa «hervir». La preparación de la levadura se denomina «fermento».

Hasta el siglo XVII no se descubrió la naturaleza de la levadura. En el año 1680, Van Leeuwenhoek observó por vez primera células de levadura. Para este fin hizo uso de un instrumento que revolucionaría la Biología: el «microscopio». Se basa en el empleo y el enfoque de la luz mediante lentes. Ya hacia el año 1590 se idearon instrumentos que utilizaban combinaciones de lentes («Microscopios compuestos») por un pulidor de lentes, Zacharias Janssen. Los microscopios primitivos fueron en principio de utilidad, pero las lentes estaban tan imperfectamente pulidas que los objetos ampliados aparecían como burbujas cubiertas de pelusa, de estructura inapreciable. Van Leeuwenhoek pulió lentes delgadas, pero perfectas, que aumentaban la imagen hasta 200 veces. Utilizó lentes simples («microscopio simple»).

Con el tiempo se extendió la práctica de utilizar buenas lentes en combinaciones (pues un microscopio compuesto tiene, al menos potencialmente, un mayor poder de resolución que un microscopio simple), y se hizo aún más extenso el mundo de lo muy pequeño. Un siglo y medio después de Leeuwenhoek, un físico francés, Charles Cagniard de la Tour, usando un buen microscopio estudió los pequeños fragmentos de levadura con la suficiente atención como para observarlos en el proceso de autorreproducción. Las pequeñas burbujas tenían vida. Más tarde, hacia 1850, la levadura se convirtió en un importante objeto de estudio.

BOOK: Introducción a la ciencia II. Ciencias Biológicas
2.23Mb size Format: txt, pdf, ePub
ads

Other books

The Decadent Cookbook by Gray, Durian, Lucan, Medlar, Martin, Alex, Fletcher, Jerome
Awakening by Cate Tiernan
Angel's Devil by Suzanne Enoch
Read and Buried by Erika Chase
May B. by Caroline Rose
The Seas by Samantha Hunt
New World Ashes by Jennifer Wilson
Saturday's Child by Ruth Hamilton