Authors: James Gleick
At the February 10, 1986, hearing of the presidential commission on the space shuttle accident:
“I took this stuff that I got out of your sealand I put it in ice water,and I discovered that when you put some pressure on it fora while and then undo it it doesn't stretch back. It stays the same dimension. In other words, for a few seconds at least and moreseconds than that, there is no resilience in this particular material when it is at a temperature of 32 degrees. I believe that has somesignificance for our problem.”
By the beginning of the new year Caltech had made Gell-Mann an offer and Gell-Mann had accepted. He moved into an office just upstairs from Feynman’s. Caltech had now placed together in one building the two leading minds of their generation. To the close-knit, international community of physicists—a small world, no matter how rapidly it was growing—the collaborations and the rivalries between these men gained an epic quality. They were together, working or feuding, leaving their imprint on every area they cared to touch, for the rest of Feynman’s life. They gave their colleagues a long time to muse on how strikingly different were the ways in which a giant intellect might choose to reveal itself, even in the person of a modern theoretical physicist.
In the spring of 1955 the man most plainly and universally identified with the word
genius
died at Princeton Hospital. Most of his body was cremated, the ashes scattered, but not the brain. The hospital’s pathologist, Dr. Thomas S. Harvey, removed this last remnant to a jar of formaldehyde.
Harvey weighed it. A mediocre two and two-thirds pounds. One more negative datum to sabotage the notion that the brain’s size might account for the difference between ordinary and extraordinary mental ability—a notion that various nineteenth-century researchers had labored futilely to establish (claiming along the way to have demonstrated the superiority of men over women, white men over black men, and Germans over Frenchmen). The brain of the great mathematician Carl Friedrich Gauss had been turned over to such scientists. It disappointed them. Now, with Einstein’s cerebrum on their hands, researchers proposed more subtle ways of searching for the secret of genius: measuring the density of surrounding blood vessels, the percentage of glial cells, the degree of neuronal branching. Decades passed. Microscope sections and photographic slides of Einstein’s brain circulated among a tight circle of anatomically minded psychologists, called neuropsychologists, unable to let go the idea that a detectable sign of the qualities that made Einstein famous might remain somewhere in these fragmentary trophies. By the 1980s this most famous of brains had been whittled down to small gray shreds preserved in the office of a pathologist retired to Wichita, Kansas—a sodden testament to the elusiveness of the quality called genius.
Eventually the findings were inconclusive, though that did not make them unpublishable. (One researcher counted a large excess of branching cells in the parietal sector called Brodmann area 39.) Those searching for genius’s corporeal basis had little enough material from which to work. “Is there a neurological substrate for talent?” asked the editors of one neuropsychology volume. “Of course, as neuropsychologists we hypothesize that there must be such a substrate and would hardly think to relegate talent somehow to ‘mind.’ What evidence currently exists would be the results of the work on Einstein’s brain …”—the brain that created the post-Newtonian universe, that released the pins binding us to absolute space and time, that visualized (in its parietal lobe?) a plastic fourth dimension, that banished the ether, that refused to believe God played dice, that piloted such a kindly, forgetful form about the shaded streets of Princeton. There was only one Einstein. For schoolchildren and neuropsychologists alike, he stood as an icon of intellectual power. He seemed—but was this true?—to have possessed a rare and distinct quality, genius as an essence, not a mere statistical extremum on a supposed bell-curve of intelligence. This was the conundrum of genius. Was genius truly special? Or was it a matter of degree—a miler breaking 3:50 rather than 4:10? (A shifting bell-curve, too: yesterday’s record-setter, today’s also-ran.) Meanwhile, no one had thought to dissect the brains of Niels Bohr, Paul A. M. Dirac, Enrico Fermi; Sigmund Freud, Pablo Picasso, Virginia Woolf; Jascha Heifetz, Isadora Duncan, Babe Ruth; or any of the other exceptional, creative, intuitive souls to whom the word was so often and so lubricously applied.
What a strange and bewildering literature grew up around the term
genius
—defining it, analyzing it, categorizing it, rationalizing and reifying it. Commentators have contrasted it with such qualities as (
mere
) talent, intellect, imagination, originality, industriousness, sweep of mind and elegance of style; or have shown how genius is composed of these in various combinations. Psychologists and philosophers, musicologists and art critics, historians of science and scientists themselves have all stepped into this quagmire, a capacious one. Their several centuries of labor have produced no consensus on any of the necessary questions. Is there such a quality? If so, where does it come from? (A glial surplus in Brodmann area 39? A doting, faintly unsuccessful father who channels his intellectual ambition into his son? A frightful early encounter with the unknown, such as death of a sibling?) When otherwise sober scientists speak of the genius as magician, wizard, or superhuman, are they merely indulging in a flight of literary fancy? When people speak of the borderline between genius and madness, why is it so evident what they mean? And a question that has barely been asked (the where-are-the-.400-hitters question): Why, as the pool of available humans has risen from one hundred million to one billion to five billion, has the production of geniuses—Shakespeares, Newtons, Mozarts, Einsteins—seemingly choked off to nothing, genius itself coming to seem like the property of the past?
“Enlightened, penetrating, and capacious minds,” as William Duff chose to put it two hundred years ago, speaking of such exemplars as Homer, Quintilian, and Michelangelo in one of a string of influential essays by mid-eighteenth-century Englishmen that gave birth to the modern meaning of the word
genius
. Earlier, it had meant spirit, the magical spirit of a jinni or more often the spirit of a nation. Duff and his contemporaries wished to identify genius with the godlike power of invention, of creation, of making what never was before, and to do so they had to create a psychology of imagination: imagination with a “
RAMBLING
and
VOLATILE
power”; imagination “perpetually attempting to soar” and “apt to deviate into the mazes of error.”
Imagination is that faculty whereby the mind not only reflects on its own operations, but which assembles the various ideas conveyed to the understanding by the canal of sensation, and treasured up in the repository of the memory, compounding or disjoining them at pleasure; and which, by its plastic power of inventing new associations of ideas, and of combining them with infinite variety, is enabled to present a creation of its own, and to exhibit scenes and objects which never existed in nature.
These were qualities that remained two centuries later at the center of cognitive scientists’ efforts to understand creativity: the mind’s capacity for self-reflection, self-reference, self-comprehension; the dynamical and fluid creation of concepts and associations. The early essayists on genius, writing with a proper earnestness, attempting to reduce and regularize a phenomenon with (they admitted) an odor of the inexplicable, nevertheless saw that genius allowed a certain recklessness, even a lack of craftsmanship. Genius seemed natural, unlearned, uncultivated. Shakespeare was—“in point of genius,” Alexander Gerard wrote in 1774—Milton’s superior, despite a “defective” handling of poetic details. The torrent of analyses and polemics on genius that appeared in those years introduced a rhetoric of ranking and comparing that became a standard method of the literature. Homer versus Virgil, Milton versus Virgil, Shakespeare versus Milton. The results—a sort of tennis ladder for the genius league—did not always wear well with the passage of time. Newton versus Bacon? In Gerard’s view Newton’s discoveries amounted to a filling in of a framework developed with more profound originality by Bacon—“who, without any assistance, sketched out the whole design.” Still, there were those bits of Newtonian mathematics to consider. On reflection Gerard chose to leave for posterity “a question of very difficult solution, which of the two had the greatest genius.”
He and his contemporary essayists had a purpose. By understanding genius, rationalizing it, celebrating it, and teasing out its mechanisms, perhaps they could make the process of discovery and invention less accidental. In later times that motivation has not disappeared. More overtly than ever, the nature of genius—genius as the engine of scientific discovery—has become an issue bound up with the economic fortunes of nations. Amid the vast modern network of universities, corporate laboratories, and national science foundations has arisen an awareness that the best financed and best organized of research enterprises have not learned to engender, perhaps not even to recognize, world-turning originality.
Genius, Gerard summed up in 1774, “is confessed to be a subject of capital importance, without the knowledge of which a regular method of invention cannot be established, and useful discoveries must continue to be made, as they have generally been made hitherto, merely by chance.” Hitherto, as well. In our time he continues to be echoed by historians of science frustrated by the sheer ineffability of it all. But they keep trying to replace awe with understanding. J. D. Bernal said in 1939:
It is one of the hopes of the science of science that, by careful analysis of past discovery, we shall find a way of separating the effects of good organization from those of pure luck, and enabling us to operate on calculated risks rather than blind chance.
Yet how could anyone rationalize a quality as fleeting and accident-prone as a genius’s inspiration: Archimedes and his bath, Newton and his apple? People love stories about geniuses as alien heroes, possessing a quality beyond human understanding, and scientists may be the world’s happiest consumers of such stories. A modern example:
A
physicist studying quantum field theory with Murray Gell-Mann at the California Institute of Technology in the 1950s, before standard texts have become available, discovers unpublished lecture notes by Richard Feynman, circulating samizdat style. He asks Gell-Mann about them. Gell-Mann says no, Dick’s methods are not the same as the methods used here. The student asks, well, what are Feynman’s methods? Gell-Mann leans coyly against the blackboard and says, Dick’s method is this. You write down the problem. You think very hard. (He shuts his eyes and presses his knuckles parodically to his forehead.) Then you write down the answer.
The same story appeared over and over again. It was an old genre. From an 1851 tract titled
Genius and Industry
:
(A professor from the University of Cambridge calls upon a genius of mathematics working in Manchester as a lowly clerk.)
“…
from Geometry to Logarithms, and to the Differential and Integral Calculus; and thence again to questions the most foreign and profound: at last, a question was proposed to the poor clerk
—
a question which weeks had been required to solve. Upon a simple slip of paper it was answered immediately. ‘But how,’ said the Professor, ‘do you work this? show me the rule! … The answer is correct but you have reached it by a different way.’
“‘I have worked it,’ said the clerk, ‘from a rule in my own mind. I cannot show you the law
—
I never saw it myself; the law is in my mind.’
“‘Ah!’ said the Professor, ‘if you talk of a law within your mind, I have done; I cannot follow you there.’”
Magicians again. As Mark Kac said: “… The working of their minds is for all intents and purposes incomprehensible. Even after we understand what they have done, the process by which they have done it is completely dark.” The notion places a few individuals at the margin of their community—the impractical margin, since the stock in trade of the scientist is the method that
can
be transferred from one practitioner to the next.
If the most distinguished physicists and mathematicians believe in the genius as magician, it is partly for psychological protection. A merely excellent scientist could suffer an unpleasant shock when he discussed his work with Feynman. It happened again and again: physicists would wait for an opportunity to get Feynman’s judgment of a result on which they had staked weeks or months of their career. Typically Feynman would refuse to allow them to give a full explanation. He said it spoiled his fun. He would let them describe just the outline of the problem before he would jump up and say,
Oh, I know that …
and scrawl on the blackboard not his visitor’s result,
A
, but a harder, more general theorem,
X
. So
A
(about to be mailed, perhaps, to the
Physical Review
) was merely a special case. This could cause pain. Sometimes it was not clear whether Feynman’s lightning answers came from instantaneous calculation or from a storehouse of previously worked-out—and unpublished—knowledge. The astrophysicist Willy Fowler proposed at a Caltech seminar in the 1960s that quasars—mysterious blazing radiation sources lately discovered in the distant sky—were supermassive stars, and Feynman immediately rose, astonishingly, to say that such objects would be gravitationally unstable. Furthermore, he said that the instability followed from general relativity. The claim required a calculation of the subtle countervailing effects of stellar forces and relativistic gravity. Fowler thought he was talking through his hat. A colleague later discovered that Feynman had done a hundred pages of work on the problem years before. The Chicago astrophysicist Subrahmanyan Chandrasekhar independently produced Feynman’s result—it was part of the work for which he won a Nobel Prize twenty years later. Feynman himself never bothered to publish. Someone with a new idea always risked finding, as one colleague said, “that Feynman had signed the guest book and already left.”