Frankenstein's Cat: Cuddling Up to Biotech's Brave New Beasts (18 page)

BOOK: Frankenstein's Cat: Cuddling Up to Biotech's Brave New Beasts
4.95Mb size Format: txt, pdf, ePub

In the 1960s, the Central Intelligence Agency recruited an unusual field agent: a cat. In an hour-long procedure, a veterinary surgeon transformed the furry feline into an elite spy, implanting a microphone in her ear canal and a small radio transmitter at the base of her skull, and weaving a thin wire antenna into her long gray-and-white fur. This was Operation Acoustic Kitty, a top-secret plan to turn a cat into a living, walking surveillance machine. The leaders of the project hoped that by training the feline to go sit near foreign officials, they could eavesdrop on private conversations.

The problem was that cats are not especially trainable—they don’t have the same deep-seated desire to please a human master that dogs do—and the agency’s robo-cat didn’t seem terribly interested in national security. For its first official test, CIA staffers drove Acoustic Kitty to the park and tasked it with capturing the conversation of two men sitting on a bench. Instead, the cat wandered into the street, where it was promptly squashed by a taxi. The program was abandoned; as a heavily redacted CIA memo from the time delicately phrased it, “Our final examination of trained cats … convinced us that the program would not lend itself in a practical sense to our highly specialized needs.” (Those specialized needs, one assumes, include a decidedly unflattened feline.)

Operation Acoustic Kitty, misadventure though it was, was a visionary idea just fifty years before its time. Today, once again, the U.S. government is looking to animal-machine hybrids to safeguard the country and its citizens. In 2006, for example, DARPA zeroed in on insects, asking the nation’s scientists to submit “innovative proposals to develop technology to create insect-cyborgs.”

It was not your everyday government request, but it was an utterly serious one. For years, the U.S. military has been hoping to develop “micro air vehicles”—ultrasmall flying robots capable of performing surveillance in dangerous territory. Building these machines is not easy. The dynamics of flight change at very small sizes, and the vehicles need to be lightweight enough to fly, yet strong enough to carry cameras and other equipment. Most formidably, they need a source of power, and batteries light enough for microfliers just don’t have enough juice to keep the crafts aloft for very long. Consider two of the tiny, completely synthetic drones that engineers have managed to create: The Nano Hummingbird, a flying robot modeled after the bird, with a 6.5-inch wingspan, maxes out at an eleven-minute flight, while the DelFly Micro, which measures less than four inches from wingtip to wingtip, can stay airborne for just three minutes.

DARPA officials knew there had to be something better out there. “Proof-of-existence of small-scale flying machines … is abundant in nature in the form of insects,” Amit Lal, a DARPA program manager and Cornell engineer, wrote in a pamphlet the agency issued to the prospective researchers. So far, nature’s creations far outshine our own. Insects are aerodynamic, engineered for flight, and naturally skilled at maneuvering around obstacles. And they can power themselves; a common fly can cruise the skies for hours at a time. So perhaps, DARPA officials realized, the military didn’t need to start from scratch; if they began with live insects, they’d already be halfway to their dream flying machines. All they’d have to do was figure out how to hack into insects’ bodies and control their movements. If scientists could manage to do that, the DARPA pamphlet said, “it might be possible to transform [insects] into predictable devices that can be used for … missions requiring unobtrusive entry into areas inaccessible or hostile to humans.”

DARPA’s call essentially launched a grand science fair, one designed to encourage innovation and tap into the competitive spirit of scientists around the country. The agency invited researchers to submit proposals outlining how
they’d
create steerable insect cyborgs and promised to fund the most promising projects. What the agency wanted was a remote-controlled bug that could be steered to within five meters of a target. Ultimately, the insects would also need to carry surveillance equipment, such as microphones, cameras, or gas sensors, and to transmit whatever data they collected back to military officials. The pamphlet outlined one specific application for the robo-bugs—outfitted with chemical sensors, they could be used to detect traces of explosives in remote buildings or caves—and it’s easy to imagine other possible tasks for such cyborgs. Insect drones kitted out with video cameras could reveal whether a building is occupied and whether those inside are civilians or enemy combatants, while those with microphones could record sensitive conversations, becoming bugs that literally bugged you.

As far-fetched and improbable as DARPA’s dream of steerable robo-bugs sounds, a host of recent scientific breakthroughs means it’s likely to be far more successful than Acoustic Kitty was. The same advances that enabled the development of modern wildlife-tracking devices—the simultaneous decrease in size and increase in power of microprocessors, receivers, and batteries—are making it possible to create true animal cyborgs. By implanting these micromachines into animals’ bodies and brains, we can seize control of their movements and behaviors. Genetics provides new options, too, with scientists engineering animals whose nervous systems are easy to manipulate. Together, these and other developments mean that we can make tiny flying cyborgs—and a whole lot more. Engineers, geneticists, and neuroscientists are controlling animal minds in different ways and for different reasons, and their tools and techniques are becoming cheaper and easier for even us nonexperts to use. Before long, we may all be able to hijack animal bodies. The only question is whether we’ll want to.

*   *   *

DARPA’s call for insect cyborgs piqued the interest of Michel Maharbiz, an electrical engineer at the University of California, Berkeley. He was excited by the challenge of creating flying machines that merged living bodies and brains with electronic bits and bytes. “What I wanted at the end of the day was a remote-controlled airplane,” Maharbiz recalls. “What was the closest thing to a remote-controlled airplane that I could get with these beetles?”

Maharbiz was an expert at making small electronic devices but an amateur when it came to entomology. So he started reading up. He figured that most scientists taking on DARPA’s challenge would work with flies or moths, longtime laboratory superstars, but Maharbiz came to believe that beetles were a better bet. Compared with flies and moths, beetles are sturdy animals, encased in hard shells, and many species are large enough to carry significant cargo. The downside: Scientists didn’t know much about the specific nerve pathways and brain circuits involved in beetle flight.

That meant that the first challenge was to unravel the insects’ biology. Maharbiz and his team began working with several different beetle species and eventually settled on
Mecynorrhina torquata
, or the flower beetle. It is a scary-looking bug—more than two inches long, with fearsome claws and a rhinoceros-like horn on the forehead. Through trial and error, the scientists homed in on a promising region of the beetle brain nestled at the base of the optic lobes. Previous research had shown that neural activity in this area helped keep the insect’s wings oscillating, and Maharbiz’s team discovered that when they stimulated this part of the brain in just the right way, they could start and stop beetle flight. When they sent a series of rapid electrical signals to the region, the beetle started flapping its wings and readied itself for takeoff. Sending a single long pulse to the same area prompted the insect to immediately still its wings. The effect was so dramatic that a beetle in mid-flight would simply fall out of the air.

After he discovered these tricks, Maharbiz was ready to try building the full flying machine. The flower beetle’s transformation began with a quick trip to the freezer. In the icy air, the beetle’s body temperature dropped, immobilizing and anesthetizing the insect. Then Maharbiz and his students removed the bug from the icebox and readied their instruments. They poked a needle through the beetle’s exoskeleton, making small holes directly over the brain and the base of the optic lobes, and threaded a thin steel wire into each hole.

They made another set of holes over the basalar muscles, which modulate wing thrust and are located on either side of the beetle’s body. The researchers pushed a wire into the right basalar muscle. Stimulating it would cause the beetle’s right wing to start beating with more power, making the insect veer left. They put another wire into the left basalar muscle; they would use it to steer the beetle to the right. The loose ends of all these wires snaked out of their respective holes and plugged into a package of electronics mounted with beeswax on the beetle’s back. This “backpack” included all the equipment Maharbiz needed to wirelessly send signals to the beetle’s brain: a miniature radio receiver, a custom-built circuit board, and a battery.

Then it was time for a test flight. One of Maharbiz’s students called up their custom-designed “Beetle Commander” software on a laptop. He issued the signal. The antennae jutting out of the beetle’s backpack received the message and passed it along to the circuit board, which sent electricity surging down the wire and into the beetle’s optic lobe. The insect’s wings began to flap. The empty white room the researchers used as an airfield filled with a buzzing sound, and the bug took flight. The beetle flew on its own—it didn’t need any further direction from human operators to stay airborne—but as it cruised across the room, the researchers overlaid their own commands. They pinged the basalar muscles, prompting the beetle to weave back and forth through the room, as if flying through an invisible maze. It wouldn’t have looked out of place going up against a stunt pilot at an air show. Another jolt of electricity to the optic lobe, and the beetle dropped out of the air and skittered across the tile floor.

As soon as Maharbiz presented his work, the news stories came fast and furious, with pronouncements such as “The creation of a cyborg insect army has just taken a step closer to reality,” “Spies may soon be bugging conversations using actual insects, thanks to research funded by the US military,” and more. A columnist speculated about the possibility of a swarm of locust drones being used as vehicles for launching deadly germs. There was chatter about beetles that had been “zombified,” and references to “the impending robots vs. humans war.”

When Maharbiz reflects upon this media frenzy, he admits that the immense public interest in his work doesn’t surprise him. The research, after all, is practically primed to light up the futuristic-fantasy centers of our brains. Insects, even without modifications, seem like weird, alien organisms to many of us. As Maharbiz explains, “Insects have inherently some sort of strange, science fiction quality that a bunny doesn’t have.” Add in miniature electronics, flying devices, animal-machine hybrids, and covert military operations, and you have a recipe for dystopian daydreaming.

But Maharbiz bristles at the most sinister suggestions, at the media coverage that suggests his beetles are the product of, as he puts it, “some evil government conspiracy.” As for the possibility that the U.S. government is planning to use the bugs to build a killer insect army or to spy on its own citizens? “I think that’s nonsense,” he says. His beetles haven’t been sent out into the field yet—they still need some refinement before they’re ready for deployment—but if and when they are, Maharbiz says he expects his bugs to be used abroad, in routine military operations. (Of course, some people may find that “equally reprehensible,” he acknowledges.) There are civilian applications, too. Imagine, Maharbiz tells me, an army of beetle-bots, steered to the scene of an earthquake. The bugs could be outfitted with temperature sensors, guided through rubble, and programmed to send messages back to search teams if they detect any objects that are close to human body temperature; rescuers would then know exactly where to search for survivors.

Whatever the application, future insect commanders will have options that go beyond beetles. Maharbiz is working on a remote-controlled fly, which he anticipates being especially difficult to build. “The fly is so small and the muscles are so packed and everything’s so tiny,” he says, that even just implanting the electronics will be challenging. A Chinese research team has managed to start and stop flight in honeybees, and Amit Lal, the engineer who led the DARPA program, has created steerable cyborg moths.

One of Lal’s innovations has been figuring out how to take advantage of morphogenesis, the process by which many species of insects transform from wriggling larvae to spindly, multilegged adults. During pupation, a baby insect wraps itself in a protective cocoon or shell while its soft, immature body becomes a more structurally complex adult one. (Lal’s species of choice is the tobacco hawk moth, which morphs from a bright green worm into a brown-and-white spotted moth.) To Lal, this phase of the insect life cycle presented a unique opportunity; he hoped that if he inserted electronic components into a hawk moth when it was a wee pupa, the bug’s body would rebuild itself around the implant. In one set of experiments, Lal and his colleagues pushed thin wires through the hard shell that protects a hawk moth pupa and positioned them in the insect’s neck muscles and brain. Outside the bug’s body, the wires linked up with a small circuit board, which the researchers left resting loosely atop the pupal case. They repeated the procedure with twenty-nine more pupae and then tucked them all away inside an incubator and allowed them to develop normally.

About a week later, the insects shed their shells, emerging as fully grown moths. Their bodies had in fact fashioned themselves around the implants; tissue had grown around the wires, securing them in place. The wires ran out of the moths’ heads and partway down their backs, winding their way into the attached circuit board. All researchers had to do to begin steering the moths was plug their control system into the circuit board, a task that took a matter of seconds.

These kinds of pupal surgeries have much to recommend them, the researchers say. They lead to more stable, permanent interfaces between electronic devices and living tissue. The approach may also be less traumatic for the animals; bugs heal easily during pupation, and since the adults are born with circuit boards hanging out of their backs, they’re less likely to perceive them as foreign objects or extra weight. (After all, the bugs will never know a life in which they
aren’t
attached to circuit boards.) It’s also much easier to operate on a pupa than an adult insect. The procedure is so simple that it could enable the “mass production of these hybrid insect-machine systems,” the scientists wrote.

Other books

A Step Beyond by Christopher K Anderson
Gravity by Amanda Miga
The Railroad War by Jesse Taylor Croft
Dragons on the Sea of Night by Eric Van Lustbader
The Betrayed by Jana Deleon
Five-Ring Circus by Jon Cleary
Hidden Hills by Jannette Spann