Data Mining (147 page)

Read Data Mining Online

Authors: Mehmed Kantardzic

BOOK: Data Mining
5.91Mb size Format: txt, pdf, ePub

Garcia, E., SVD and LSI Tutorial 4: Latent Semantic Indexing (LSI) How-to Calculations, Mi Islita, 2006,
http://www.miislita.com/information-retrieval-tutorial/svd-lsi-tutorial-4-lsi-how-to-calculations.html
.

Han, J., M. Kamber,
Data Mining: Concepts and Techniques
, 2nd edition, San Francisco, Morgan Kaufmann, 2006.

Jackson, P., I. Moulinier,
Natural Language Processing for Online Applications: Text Retrieval, Extraction and Categorization
, John Benjamins Publ. Co., Amsterdam, 2007.

Langville, A. N., C. D. Meyer,
Google’s PageRank and Beyond: The Science of Search Engine Rankings
, Princeton University Press, Princeton, 2006.

Liu, B.,
Web Data Mining: Exploring Hyperlinks, Contents and Usage Data
, Springer, Heidelberg, 2007.

Mulvenna, M. D., et al., eds., Personalization on the Net Using Web Mining,
CACM
, Vol. 43, No. 8, 2000.

Nisbet, R., J. Elder, G. Miner, Advanced Algorithms for Data Mining, in
Handbook of Statistical Analysis and Data Mining Applications
, R. Nisbet, J. Elder, J. F. Elder, G. Miner, eds., Academic Press, Amsterdam, NL, 2009, pp. 151–172.

Sirmakessis, S.,
Text Mining and Its Applications
, Springer-Verlag, Berlin, 2003.

Zhang, Q., R. S. Segall, Review of Data, Text and Web Mining Software,
Kybernetes
, Vol. 39, No. 4, 2010, pp. 625–655.

Zhang, Y., et al.,
Computational Web Intelligence: Intelligent Technology for Web Applications
, World Scientific Publ. Co., Singapore, 2004.

Zhang, X., J. Edwards, J. Harding, Personalised Online Sales Using Web Usage Data Mining,
Computers in Industry
, Vol. 58, No. 8–9, 2007, pp. 772–782.

CHAPTER 12

Antunes, C., A. Oliveira, Temporal Data Mining: An Overview, Proceedings of Workshop on Temporal Data Mining (KDD'01). 2001, pp. 1–13.

Bar-Or, A., R. Wolff, A. Schuster, D. Keren, Decision Tree Induction in High Dimensional, Hierarchically Distributed Databases, Proceedings of 2005 SIAM International Conference on Data Mining (SDM’05), Newport Beach, CA, April 2005.

Basak, J., R. Kothari, A Classification Paradigm for Distributed Vertically Partitioned Data,
Neural Computation
, Vol. 16, No. 7, 2004, pp. 1525–1544.

Bhaduri, K., R. Wolff, C. Giannella, H. Kargupta, Distributed Decision-Tree Induction in Peer-to-Peer Systems,
Statistical Analysis and Data Mining
, Vol. 1, No. 2, 2008, pp. 85–103.

Bishop, C. M.,
Pattern Recognition and Machine Learning
, Springer, New York, 2006.

Branch, J., B. Szymanski, R. Wolff, C. Gianella, H. Kargupta, In-network Outlier Detection in Wireless Sensor Networks, Proceedings of the 26th International Conference on Distributed Computing Systems (ICDCS), July 2006, pp. 102–111.

Cannataro, M., D. Talia, The Knowledge Grid,
Communications of the ACM
, Vol. 46, No. 1, 2003, pp. 89–93.

Cios, K. J., W. Pedrycz, R. W. Swiniarski, L. A. Kurgan,
Data Mining: A Knowledge Discovery Approach
, Springer, New York, 2007.

Congiusta, A., D. Talia, P. Trunfio, Service-Oriented Middleware for Distributed Data Mining on the Grid,
Journal of Parallel and Distributed Computing
, Vol. 68, No. 1, 2008, pp. 3–15.

Copp, C., Data Mining and Knowledge Discovery Techniques,
Defence Today
, NCW 101, 2008,
http://www.ausairpower.net/NCW-101-17.pdf
.

Datta, S., K. Bhaduri, C. Giannella, R. Wolff, H. Kargupta, Distributed Data Mining in Peer-to-Peer Networks,
IEEE Internet Computing
, Vol. 10, No. 4, 2006, pp. 18–26.

Ester, M., H.-P. Kriegel, J. Sander, Spatial Data Mining: A Database Approach, Proceedings of 5th International Symposium on Advances in Spatial Databases, 1997, pp. 47–66.

Faloutsos, C., Mining Time Series Data,
Tutorial ICML 2003
, Washington, DC, August 2003.

Fuchs, E., T. Gruber, J. Nitschke, B. Sick, On-Line Motif Detection in Time Series with Swift Motif,
Pattern Recognition
, Vol. 42, 2009, pp. 3015–3031.

Gorodetsky, V., O. Karsaeyv, V. Samoilov, Software Tool for Agent Based Distributed Data Mining, International Conference on Integration of Knowledge Intensive Multi-Agent Systems (KIMAS), Boston, MA, October 2003.

Guo, H., W. Hsu, A Survey of Algorithms for Real-Time Bayesian Network Inference,
AAAI-02/KDD-02/UAI-02 Workshop on Real-Time Decision Support
and
Diagnosis
, 2002.

Hammouda, K., M. Kamel, HP2PC: Scalable Hierarchically-Distributed Peer-to-Peer Clustering, Proceedings of the 2007 SIAM International Conference on Data Mining (SDM ’07), Philadelphia, PA, 2007.

Januzaj, E., et al., Towards Effective and Efficient Distributed Clustering, Proceedings of the ICDM 2003 Conference, Florida, 2003.

Keogh, E., Data Mining and Machine Learning in Time Series Databases,
Tutorial ECML/PKDD 2003
, Cavtat-Dubrovnik (Croatia), September 2003.

Koperski, K., et al., Spatial Data Mining: Progress and Challenges,
SIGMOD’96 Workshop on Research Issues on Data Mining and Knowledge Discovery,
1996.

Kotecha, J. H., V. Ramachandran, A. M. Sayeed, Distributed Multitarget Classification in Wireless Sensor Networks,
IEEE Journal of Selected Areas in Communications
, Vol. 23, No. 4, 2005, pp. 703–713.

Kriegel, H. P., et al., Future Trends in Data Mining,
Data Mining and Knowledge Discovery
, Vol. 15, 2007, pp. 87–97.

Kumar, A., M. Kantardzic, S. Madden, Guest Editors, Introduction: Distributed Data Mining–Framework and Implementations,
IEEE Internet Computing
, Vol. 10, No. 4, 2006, pp. 15–17.

Lavrac, N., et al., Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving,
Machine Learning
, Vol. 57, 2004, pp. 13–34.

Laxman, S., P. S. Sastry, A Survey of Temporal Data Mining,
Sadhana
, Vol. 31, No. 2, 2006, pp. 173–198.

Li, T., S. Zhu, M. Ogihara, Algorithms for Clustering High Dimensional and Distributed Data,
Intelligent Data Analysis Journal
, Vol. 7, No. 4, 2003.

Li, S., T. Wu, W. M. Pottenger, Distributed Higher Order Association Rule Mining Using Information Extracted from Textual Data,
SIGKDD Exploration
, Vol. 7, No. 1, 2005, pp. 26–35.

Liu, K., H. Kargupta, J. Ryan, Random Projection-Based Multiplicative Data Perturbation for Privacy Preserving Distributed Data Mining,
IEEE Transactions on Knowledge and Data Engineering (TKDE)
, Vol. 18, No. 1, 2006, pp. 92–106.

Miller, H. J., Geographic Data Mining and Knowledge Discovery, in
Handbook of Geographic Information Science

, J. Wilson, A. Stewart Fotheringham, eds., Blackwell Publishing, Malden, MA, 2008.

Nisbet, R., J. Elder, G. Miner, Advanced Algorithms for Data Mining, in
Handbook of Statistical Analysis and Data Mining Applications
, R. Nisbet, J. Elder, J. F. Elder, G. Miner, eds., Academic Press, Amsterdam, NL, 2009, pp. 151–172.

Pearl, J.,
Causality
, Cambridge University Press, New York, 2000.

Pearl, J., Statistics and Causal Inference: A Review,
Sociedad de Estadıstica e Investigaci′n Operativa Test
, Vol. 12, No. 2, 2003, pp. 281–345.

Roddick, J. F., M. Spiliopoulou, A Survey of Temporal Knowledge Discovery Paradigms and Methods,
IEEE Transactions on Knowledge and Data Engineering
, Vol. 14, No. 4, 2002.

Russell, S. J., P. Norvig,
Artificial Intelligence
, Pearson Education, Upper Saddle River, NJ, 2003.

Shekhar, S., S. Chawla,
Introduction to Spatial Data Mining, in
Spatial Databases: A Tour
, Prentice Hall, Upper Saddle River, NJ, 2003.

Shekhar, S., P. Zhang, Y. Huang, R. Vatsavai, Trends in Spatial Data Mining, in
Data Mining: Next Generation Challenges and Future Directions
, H. Kargupta, A. Joshi, K. Sivakumar, Y. Yesha, eds., AAAI/MIT Press, Menlo Park, CA, 2004.

Wasserman, S., K. Faust,
Social Network Analysis: Methods and Applications
, Cambridge University Press, New York, 1994.

Wu, Q., et al., On Computing Mobile Agent Routes for Data Fusion in Distributed Sensor Networks,
IEEE Transactions on Knowledge and Data Engineering
, Vol. 16, 2004, pp. 740–753.

Xu, X., N. Yuruk, Z. Feng, T. Schweiger, SCAN: A Structural Clustering Algorithm for Networks, Proceedings of the 13th International Conference on Knowledge Discovery and Data Mining (KDD ’07), New York NY, 2007, pp. 824–833.

Yang, Q., X. Wu, 10 Challenging Problems in Data Mining Research,
International Journal of Information Technology and Decision Making
, Vol. 5, No. 4, 2006, pp. 597–604.

Yu, H., E.-C. Chang, Distributed Multivariate Regression Based on Influential Observations, The Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, August 2003.

Zaki, M., Y. Pan, Introduction: Recent Development in Parallel and Distributed Data Mining,
Distributed and Parallel Databases
, Vol. 11, No. 2, 2002.

CHAPTER 13

Cox, E.,
Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration
, Morgan Kaufmann, San Francisco, CA, 2005.

Dehuri, S., et al., Genetic Algorithms for Multi-Criterion Classification and Clustering in Data Mining,
International Journal of Computing & Information Sciences
, Vol. 4, No. 3, 2006, pp. 143–154.

Fogel, D., An Introduction to Simulated Evolutionary Optimization,
IEEE Transactions on Neural Networks
, Vol. 5, No. 1, 1994, pp. 3–14.

Fogel, D. B., ed.,
Evolutionary Computation
, IEEE Press, New York, 1998.

Fogel, D. B., Evolutionary Computing,
Spectrum
, Vol. 37, No. 2, 2000, pp. 26–32.

Freitas, A., A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery, in
Advances in Evolutionary Computing: Theory and Applications
, A. Ghosh, S. Tsutsui, eds., Springer Verlag, New York, 2003.

Goldenberg, D. E.,
Genetic Algorithms in Search, Optimization and Machine Learning
, Addison Wesley, Reading, MA, 1989.

Hruschka, E., R. Campello, A. Freitas, A. Carvalho, A Survey of Evolutionary Algorithms for Clustering,
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
, Vol. 39, No. 2, 2009, pp. 133–155.

Kaudel, A., M. Last, H. Bunke, eds.,
Data Mining and Computational Intelligence
, Physica-Verlag, Heidelberg, Germany, 2001.

Michalewicz, Z.,
Genetic Algorithms + Data Structures = Evolution Programs
, Springer, Berlin, 1999.

Munakata, T.,
Fundamentals of the New Artificial Intelligence: Beyond Traditional Paradigm
, Springer, New York, 1998.

Navet, N., S. Chen, Financial Data Mining with Genetic Programming: A Survey and Look Forward, The 56th Session of the International Statistical Institute (ISI2007), Lisbon, August 2007.

Salleb-Aouissi, A., C. Christel Vrain, C. Nortet, QuantMiner: A Genetic Algorithm for Mining Quantitative Association Rules, Proceedings of the IJCAI-07, 2007, pp. 1035–1040.

Shah, S. C., A. Kusiak, Data Mining and Genetic Algorithm Based Gene/SNP Selection,
Artificial Intelligence in Medicine
, Vol. 31, No. 3, 2004, pp. 183–196.

Van Rooij, A. J. F., L. C. Jain, R. P. Johnson,
Neural Network Training Using Genetic Algorithms
, World Scientific Publ. Co., Singapore, 1996.

CHAPTER 14

Chen, S., A Fuzzy Reasoning Approach for Rule-Based Systems Based on Fuzzy Logic,
IEEE Transactions on System, Man, and Cybernetics
, Vol. 26, No. 5, 1996, pp. 769–778.

Chen, C. H., L. F. Pau, P. S. P. Wang,
Handbook of Pattern Recognition & Computer Vision
, World Scientific Publ. Co., Singapore, 1993.

Chen, Y., T. Wang, B. Wang, Z. Li, A Survey of Fuzzy Decision Tree Classifier,
Fuzzy Information and Engineering
, Vol. 1, No. 2, 2009, pp. 149–159.

Cox, E.,
Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration
, Morgan Kaufmann, San Francisco, CA, 2005.

Hüllermeier, E., Fuzzy Sets in Machine Learning and Data Mining,
Applied Soft Computing,
January 2008.

Jang, J. R., C. Sun, Neuro-Fuzzy Modeling and Control,
Proceedings of the IEEE
, Vol. 83, No. 3, 1995, pp. 378–406.

Jang, J., C. Sun, E. Mizutani,
Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence
, Prentice Hall, Inc., Upper Saddle River, NJ, 1997.

Kaudel, A., M. Last, H. Bunke, eds.,
Data Mining and Computational Intelligence
, Physica-Verlag, Heidelberg, Germany, 2001.

Klir, G. J., B. Yuan,
Fuzzy Sets and Fuzzy Logic: Theory and Applications
, Prentice Hall, Inc., Upper Saddle River, NJ, 1995.

Koczy, L. T., K. Hirota, Size Reduction by Interpolation in Fuzzy Rule Bases,
IEEE Transactions on System, Man, and Cybernetics
, Vol. 27, No. 1, 1997, pp. 14–25.

Kruse, R., A. Klose, Recent Advances in Exploratory Data Analysis with Neuro-Fuzzy Methods,
Soft Computing
, Vol. 8, No. 6, 2004, pp. 381–382.

Laurent, A., M. Lesot, eds.,
Scalable Fuzzy Algorithms for Data Management and Analysis, Methods and Design
, IGI Global, Hershey, PA, 2010.

Lee, E. S., H. Shih,
Fuzzy and Multi-level Decision Making: An Interactive Computational Approach
, Springer, London, 2001.

Li, H. X., V. C. Yen,
Fuzzy Sets and Fuzzy Decision-Making
, CRC Press, Inc., Boca Raton, FL, 1995.

Other books

Lost Words by Nicola Gardini
Blood From a Stone by Lucas, Cynthia
Against All Enemies by John Gilstrap
Secrets by Viggiano, Debbie
The Ambleside Alibi: 2 by Rebecca Tope
Smoke River by Krista Foss
New York Debut by Melody Carlson