Cosmic Connection (11 page)

Read Cosmic Connection Online

Authors: Carl Sagan

Tags: #Origin, #Marine Biology, #Life Sciences, #Life - Origin, #Science, #Solar System, #Biology, #Cosmology, #General, #Life, #Life on Other Planets, #Outer Space, #Astronomy

BOOK: Cosmic Connection
7.34Mb size Format: txt, pdf, ePub

One result of popular interest is that I receive a great deal of mail, all kinds of mail, some of it very pleasant, such as from the people who wrote poems and sonnets about the plaque on
Pioneer 10
; some of it from schoolchildren who wish me to write their weekly assignments for them; some from strangers who want to borrow money; some from individuals who wish me to check out their detailed plans for ray guns, time warps, spaceships, or perpetual motion machines; and some from advocates of various arcane disciplines such as astrology, ESP, UFOcontact stories, the speculative fiction of von Danniken, witchcraft, palmistry, phrenology, tea-leaf reading, Tarot cards, the I-Ching, transcendental meditation, and the psychedelic drug experience. Occasionally, also, there are sadder stories, such as from a woman who was talked to from her shower head by inhabitants of the planet Venus, or from a man who tried to file suit against the Atomic Energy Commission for tracking his every movement with “atomic rays.” A number of people write that they can pick up extraterrestrial intelligent radio signals through the fillings in their teeth, or just by concentrating in the right way.

But over the years there is one letter that stands out in my mind as the most poignant and charming of its type. There came in the post an eighty-five-page handwritten letter, written in green ballpoint ink, from a gentleman in a mental hospital in Ottawa. He had read a report in a local newspaper that I had thought it possible that life exists on other planets; he wished to reassure me that I was entirely correct in this supposition, as he knew from his own personal knowledge.

To assist me in understanding the source of his knowledge, he thought I would like to learn a little of his personal history–which explains a good bit of the eighty-five pages. As a young man in Ottawa, near the outbreak of World War II, my correspondent chanced to come upon a recruiting poster for the American armed services, the one showing a goateed old codger pointing his index finger at your belly button and saying, “Uncle Sam Wants You.” He was so struck by the kindly visage of gentle Uncle Sam that he determined to make his acquaintance immediately. My informant boarded a bus to California, apparently the most plausible habitation for Uncle Sam. Alighting at the depot, he inquired where Uncle Sam could be found. After some confusion about surnames, my informant was greeted by unpleasant stares. After several days of earnest inquiry, no one in California could explain to him the whereabouts of Uncle Sam.

He returned to Ottawa in a deep depression, having failed in his quest. But almost immediately, his life’s work came to him in a flash. It was to find “the ancient and legendary gods of old,” a phrase that reappears many times throughout the letter. He had the interesting and perceptive idea that gods survive only so long as they have worshipers. What happens then to the gods who are no longer believed in, the gods, for example, of ancient Greece and Rome? Well, he concluded, they are reduced to the status of ordinary human beings, no longer with the perquisites and powers of the godhead. They must now work for a living–like everyone else. He perceived that they might be somewhat secretive about their diminished circumstances, but would at times complain about having to do menial labor when once they supped at Olympus. Such retired deities, he reasoned, would be thrown into insane asylums. Therefore, the most reasonable method of locating these defrocked gods was to incarcerate himself in the local mental institution–which he promptly did.

While we may disagree with some of the steps in his reasoning, we probably all agree that the gentleman did the right thing.

My informant decided that to search for all the ancient and legendary gods of old would be too tiring a task. Instead, he set his sights on only a few: Jupiter, Mercury, and the goddess on the obverse face of the old British penny–not everyone’s first choice of the most interesting gods, but surely a representative trio. To his (and my) astonishment, he found–incarcerated in the very asylum in which he had committed himself–Jupiter, Mercury, and the goddess on the obverse face of the old English penny. These gods readily admitted their identities and regaled him with stories of the days of yore when nectar and ambrosia flowed freely.

And then my correspondent succeeded beyond his hopes. One day, over a bowl of Bing cherries, he encountered “God Almighty,” or at least a facsimile thereof. At least the Personage who offered him the Bing cherries modestly acknowledged being God Almighty. God Almighty luckily had a small spaceship on the grounds of the asylum and offered to take my informant on a short tool around the Solar System–which was no sooner said than done.

“And this, Dr. Sagan, is how I can assure you that the planets are inhabited.”

The letter then concluded something as follows: “But all this business about life elsewhere is so much speculation and not worth the really serious interest of a scientist such as yourself. Why don’t you address yourself to a really important problem, such as the construction of a trans-Canadian railroad at high northern latitudes?” There followed a detailed sketch of the proposed railway route and a standard expression of the sincerity of his good wishes.

Other than stating my serious intent to work on a trans-Canadian railroad at high northern latitudes, I have never been able to think of an appropriate response to this letter.

12. The Venus Detective Story

O
ne of the reasons that planetary astronomy is such a delight these days is that it is possible to find out what’s really right. In the old days, you could make any guess you liked, however improbable, about a planetary environment, and there was little chance that anyone could ever prove you wrong. Today, spacecraft hang like swords of Damocles over each hypothesis spun by planetary theoreticians, and the theoreticians can be observed in a curious amalgam of hope and fear as each new burst of spacecraft planetary information comes winging in.

Back when astronomers had telescopes, eyeballs, and very little else to assist their observations, Venus beckoned as a sister world. By the late nineteenth century, it was known that Venus had about the same mass and radius as Earth. Venus is the closest planet to Earth, and it was natural to assume that it was, in other respects, Earth-like.

Immanuel Kant imagined a race of amorous quasi-humans on Venus. Emanuel Swedenborg and Annie Besant, a founder of theosophy, found–by methods described as spirit travel and astral projection–creatures very like humans on Venus. In more recent years, some of the more spectacularly audacious flyingsaucer accounts–for example, those of George Adamski–populated Venus with a race of benign and powerful beings, many of whom seem to have been garbed in long hair and long white robes–clear symbolism, in pre-1963 America, of deep spiritual intent. There is a long history of wishful thinking, bemused speculation, and conscious and unconscious fraud, which produced a popular expectation that our nearest planetary neighbor is habitable by humans, and is possibly even already inhabited by creatures rather like us.

It was, therefore, with a sense of considerable surprise, and even annoyance, that the results of the first radio observations of Venus were greeted. These measurements, performed in 1956 by C. H. Mayer and colleagues at the U. S. Naval Research Laboratory, found Venus to be a much more intense source of radio emission than had been expected. From Venus’ distance to the Sun and the amount of sunlight it reflects back to space, the planet should be cool. Because Venus reflects so much sunlight back to space, its temperature ought to be even less than the Earth’s, despite its closeness to the Sun. Mayer’s group found that Venus, at a radio wavelength of 3 centimeters, was giving off as much radiation as it would if it were a hot body at a temperature of about 600 degrees Fahrenheit. Later observations with many different radio telescopes at many different radio frequencies confirmed the general conclusion that Venus had a “brightness temperature” of about 600 degrees to 800 degrees.

Nevertheless, there was great reluctance in the scientific community to believe that the radio emission came from the Venus surface. A hot object emits radiation at many wavelengths. Why did Venus seem hot only at radio wavelengths? How could the surface of Venus be kept so hot? And finally–since psychological factors may be unconsciously compelling, even in science–a Venus hotter than the hottest household oven is simply less pleasant a prospect than the Venus populated, in the long tradition from Kant to Adamski, by gracious humans of amorous or spiritual inclinations.

This problem of the origin of the Venus radio emission was a major part of my doctoral dissertation. I wrote some twenty scientific papers concerning it between 1961 and 1968, when the problem was finally considered settled. I look back on this period with pleasure. The Venus radio story is very much like a detective story where there are clues littering the pages. Some are vital to the solution; others are false clues, leading in the wrong direction. Sometimes the right answer can be deduced by bearing in mind all the relevant facts and requiring reasonable logical consistency and plausibility.

There were several things we knew about Venus. We knew how the brightness temperature varied with radio frequency. We knew how Venus reflected back to Earth radio waves sent out by large radar telescopes. Man’s first successful planetary probe–the United States’
Mariner 2
–found in 1962 that Venus was brighter at radio wavelengths at its center than at its edge.

To be matched against such observations were a variety of theories. They fell into two general categories: The hot-surface model, in which the radio emission came from the solid surface of the planet; and the cold-surface model, in which the radio emission came from somewhere else–from an ionized layer in the atmosphere of Venus, or from electrical discharges between droplets in the clouds of Venus, or from a hypothesized great belt of rapidly moving electrically charged particles surrounding Venus (like those that, in fact, surround the Earth and Jupiter). These latter models permitted the surface to be cold by placing the intense radio emission above the surface. If you wanted sailing ships on Venus, you were a cold-surface model advocate.

We systematically compared the cold-surface models with the observations and found that they all ran into serious troubles. The model in which the radio emission came from the ionosphere, for example, predicted that Venus should not reflect radio waves at all. But radar telescopes had found radio waves reflected from Venus with an efficiency of 10 or 20 percent. To circumvent such difficulties, advocates of the ionospheric model constructed very elaborate hypotheses in which there were many ionized layers with especially constructed holes in them to let radar through the ionosphere, hit the surface of Venus, and return to Earth. At the same time there could not be too many holes; otherwise, the radio emission would not be as intense as observed. These models seemed to me to be far too detailed and arbitrary in their requirements.

Just before the remarkable spacecraft observations of Venus of 1968, I submitted a paper to
Nature
, the British scientific journal, in which I summarized these conclusions and deduced that only the hot-surface model was consistent with all the evidence. I had earlier proposed a specific theory, in terms of the greenhouse effect, to explain how the surface of Venus could be at such high temperatures. But my conclusions against cold-surface models in 1968 did not depend upon the validity of the greenhouse explanation: It was just that a hot surface explained the data and a cold surface did not. Because of my interest in exobiology, I would have preferred a habitable Venus, but the facts led elsewhere. In a paper published in 1962, I had concluded from indirect evidence that the average surface temperature on Venus was about 800 degrees F and the average surface atmospheric pressure about fifty times larger than at the surface of Earth.

In 1968, an American spacecraft,
Mariner 5
, flew by Venus, and a Soviet spacecraft,
Venera 4
, entered its atmosphere. By the year 1974 there had been five Soviet instrumented capsules that entered the Venus atmosphere. The last three touched down and returned data from the planetary surface. They were the first craft of mankind to land on the surface of another planet. The average temperature on Venus turns out to be about 900 degrees F; the average pressure at the surface appears to be about ninety atmospheres. My early conclusions were approximately correct, just slightly too conservative.

It is interesting, now that we know by direct measurements the actual conditions on Venus, to read some of the criticism of the hot-surface model published in the 1960s. The year after receiving my Ph.D., I was offered, by a wellknown planetary astronomer, ten-to-one odds that the surface pressure on Venus was no more than ten times that on Earth. I gladly offered my ten dollars against his hundred; to his credit, he paid off–after the Soviet landing observations were in hand.

Theory and spacecraft interact in other ways. For example,
Venera 4
radioed its last temperature/pressure point at 450 degrees F and twenty atmospheres. The Soviet scientists concluded that these were the surface conditions on Venus. But ground-based radio data had already shown that the surface temperature must be much higher. Combining radar with
Mariner 5
data, we knew that the surface of Venus was far below where the Soviet scientists concluded
Venera 4
had landed. It now appears that the designers of the first Venera spacecraft, believing the models of cold-surface theoreticians, built a relatively fragile spacecraft, which was crushed by the weight of the Venus atmosphere far above the surface–much as a submarine, not designed for great depths, will be crushed at the ocean bottoms.

Other books

Envisioning Hope by Tracy Lee
Chocolate Covered Murder by Leslie Meier
Destiny's Last Bachelor? by Christyne Butler
Golden Riders by Ralph Cotton
Here Is Where We Meet by John Berger
Georgie Be Good by Marg McAlister
A Corpse in a Teacup by Cassie Page
Winter's Touch by Hudson, Janis Reams
Bipolar Expeditions by Martin, Emily
Homemade Sin by V. Mark Covington