Breve historia de la química (10 page)

Read Breve historia de la química Online

Authors: Isaac Asimov

Tags: #Científico

BOOK: Breve historia de la química
7.66Mb size Format: txt, pdf, ePub

De este modo, la teoría atómica fue un golpe mortal (si es que hacía falta alguno) a la creencia en la posibilidad de la transmutación en términos alquímicos. Toda la evidencia parecía apuntar hacia la posibilidad de que cada uno de los diferentes metales constase de un tipo distinto de átomos. Toda vez que los átomos se consideraban generalmente como indivisibles e invariables (ver, sin embargo, la hipótesis de Prout, pág. 92), no cabía pensar en transformar un átomo de plomo en otro de oro bajo ninguna circunstancia. El plomo, por lo tanto, no podría transmutarse en oro
[10]
.

Los átomos de Dalton eran, claro está, demasiado pequeños como para verse, incluso al microscopio; la observación directa era impensable. Sin embargo, las medidas indirectas podían aportar información sobre sus pesos relativos.

Por ejemplo, una parte (en peso) de hidrógeno se combinaba con ocho partes de oxígeno para formar agua. Si se suponía que una molécula de agua constaba de un átomo de hidrógeno y un átomo de oxígeno, entonces podía deducirse que el átomo de oxígeno era ocho veces más pesado que el átomo de hidrógeno. Si se decide tomar el peso del átomo de hidrógeno arbitrariamente igual a 1, entonces el peso del átomo de oxígeno en esta escala sería 8.

Por otra parte, si una parte de hidrógeno se combina con cinco partes de nitrógeno para formar amoniaco, y si se supone que la molécula de amoniaco está formada de un átomo de hidrógeno y otro de nitrógeno, puede deducirse que el átomo de nitrógeno tiene un peso de 5.

Razonando de este modo, Dalton confeccionó la primera tabla de pesos
atómicos.
Esta tabla, aunque quizá sea su más importante contribución individual, resultó estar bastante equivocada en muchos puntos. El principal fallo reside en la insistencia de Dalton en que las moléculas estaban formadas por el apareamiento de un solo átomo de un elemento con un solo átomo de otro. Sólo se apartó de esta posición cuando era absolutamente necesario.

Con el tiempo se vio, sin embargo, que esa combinación uno-a-uno no era necesariamente el caso más frecuente. El desacuerdo se manifestó concretamente en relación con el agua, incluso antes de que Dalton hubiese propuesto su teoría atómica.

Aquí, por vez primera, la fuerza de la electricidad invadió el mundo de la química.

El conocimiento de la electricidad data de los antiguos griegos, quienes hallaron que el ámbar, al frotarlo, adquiere el poder de atraer objetos ligeros.

Siglos después, el físico inglés William Gilbert (1540-1603) fue capaz de demostrar que no es solamente el ámbar el que se comporta así, sino que también otras sustancias adquieren poder de atracción al frotarlas. Hacia 1600 sugirió que las sustancias de este tipo se llamasen «eléctricas», de la palabra que en griego significa ámbar. En consecuencia, una sustancia que adquiere tal poder, por frotamiento o de otra manera, se dice que lleva una
carga eléctrica
o que contiene
electricidad.

El químico francés Charles Francois de Cisternay du Fay (1698-1739) descubrió en 1733 que había dos tipos de carga eléctrica: una que surgía en el vidrio («electricidad vitrea») y otra que podía crearse en el ámbar («electricidad resinosa»). Las sustancias que portaban un tipo de carga atraían a las de tipo contrario, mientras que dos sustancias que llevasen el mismo tipo de carga se repelían entre sí.

Benjamín Franklin (1706-90), que fue el primer gran científico norteamericano, así como gran estadista y diplomático, sugirió en 1740 la existencia de un solo fluido eléctrico. Cuando una sustancia contenía una cantidad de fluido eléctrico mayor que la normal, poseía uno de los dos tipos de carga; cuando contenía menos cantidad que la normal, poseía el otro tipo.

Franklin supuso que era el vidrio el que tenía una cantidad de fluido eléctrico superior al normal, de modo que le asignó una
carga positiva.
La resina, según él, llevaba una
carga negativa.
Los términos de Franklin se vienen utilizando desde entonces, si bien su uso lleva a un concepto de flujo de corriente opuesto al que ahora se sabe que ocurre de hecho.

El físico italiano Alessandro Volta (1745-1827) avanzó un paso más. En 1800 halló que dos metales (separados por soluciones capaces de conducir una carga eléctrica) podían disponerse de modo que una nueva carga se crease tan pronto como la vieja se alejase a lo largo de un alambre conductor. De este modo inventó la primera
batería eléctrica
y produjo una
corriente eléctrica.

La corriente eléctrica se mantenía gracias a la reacción química que implicaba a los dos metales y a la solución intermedia. El trabajo de Volta fue la primera indicación clara de que las reacciones químicas tenían algo que ver con la electricidad, una sugerencia que no fue totalmente desarrollada hasta el siglo siguiente. Si una reacción química puede producir una corriente eléctrica, no parecía demasiado descabellado el suponer que una corriente eléctrica podría implicar lo contrario y provocar una reacción química.

De hecho, a las seis semanas de describir Volta su trabajo, dos químicos ingleses, William Nicholson (1753-1815) y Anthony Carlisle (1768-1840), demostraron la acción contraria. Hicieron pasar una corriente eléctrica a través del agua y hallaron que empezaban a aparecer burbujas de gas en las varillas de metal conductoras que habían introducido en el agua. El gas que aparecía en una varilla era hidrógeno y el que aparecía en la otra, oxígeno.

En efecto, Nicholson y Carlisle habían descompuesto el agua en hidrógeno y oxígeno; tal descomposición por una corriente eléctrica se llama
electrólisis.
Habían realizado el experimento inverso al de Cavendish (véase pág. 71), en el que el hidrógeno y el oxígeno se combinaban para formar agua.

Al recoger el hidrógeno y el oxígeno en tubos separados a medida que burbujeaban, resultó que se había formado un volumen de hidrógeno justamente doble que de oxígeno. El hidrógeno era el más ligero en peso, con toda seguridad, pero el mayor volumen indicaba que podía haber más átomos de hidrógeno que de oxígeno en la molécula de agua.

Como el volumen de hidrógeno era justo doble que el de oxígeno, resultaba razonable suponer que cada molécula de agua contenía dos átomos de hidrógeno y uno de oxígeno, en vez de uno de cada, como propusiera Dalton.

Pero aun así, seguía siendo cierto que 1 parte de hidrógeno (en peso) se combinaba con 8 partes de oxígeno. Se dedujo entonces que un átomo de oxígeno era ocho veces más pesado que dos de hidrógeno juntos, y por tanto dieciséis veces más pesado que un solo átomo de hidrógeno. Si el peso del hidrógeno se considera 1, entonces el peso atómico del oxígeno debería ser 16, no 8.

Hipótesis de Avogadro

Los hallazgos de Nicholson y Carlisle se vieron reforzados por el trabajo de un químico francés, Joseph Louis Gay-Lussac (1778-1850), que invirtió los argumentos. Descubrió que 2 volúmenes de hidrógeno combinaban con 1 volumen de oxígeno para dar agua. Llegó a averiguar, de hecho, que cuando los gases se combinan entre sí para formar compuestos, siempre lo hacen en la proporción de números enteros pequeños. Gay-Lussac dio a conocer esta
ley de los volúmenes de combinación
en 1808.

Esta proporción de números enteros en la formación del agua con hidrógeno y oxígeno parecía de nuevo indicar que la molécula de agua estaba compuesta de dos átomos de hidrógeno y uno de oxígeno. También podía argüirse, siguiendo líneas de razonamiento similares, que las moléculas de amoniaco no procedían de la combinación de un átomo de hidrógeno y otro de nitrógeno, sino de un átomo de nitrógeno y tres átomos de hidrógeno. Partiendo de esta evidencia podía concluirse que el peso atómico del nitrógeno no era aproximadamente 5, sino 14.

Consideremos a continuación el hidrógeno y el cloro. Estos dos gases se combinan para formar un tercero, el cloruro de hidrógeno. Un volumen de hidrógeno se combina con un volumen de cloro, y parece razonable suponer que la molécula de cloruro de hidrógeno está formada por la combinación de un átomo de hidrógeno con uno de cloro.

Supongamos ahora que el gas hidrógeno consta de átomos de hidrógeno aislados y muy separados unos de otros, y que el gas cloro consta de átomos de cloro, también muy separados. Estos átomos se aparean para formar las moléculas de cloruro de hidrógeno, muy alejadas también unas de otras.

Vamos a suponer que empezamos con 100 átomos de hidrógeno y 100 átomos de cloruro, dando un total de 200 partículas separadas. Los átomos se aparean para formar 100 moléculas de cloruro de hidrógeno. Las 200 partículas ampliamente espaciadas (átomos) se transforman en sólo 100 partículas muy separadas (moléculas). Si el espaciado es siempre igual, hallaremos que un volumen de hidrógeno más un volumen de cloro (2 volúmenes en total) resultarían solamente en un volumen de cloruro de hidrógeno. Esto, sin embargo, no es así.

A partir de las mediciones reales, un volumen de hidrógeno combina con un volumen de cloro para formar dos volúmenes de cloruro de hidrógeno. Ya que hay dos volúmenes al empezar y dos volúmenes al acabar, debe haber el mismo número de partículas ampliamente separadas antes y después.

Pero supongamos que el gas hidrógeno no consiste en átomos separados sino en
moléculas de hidrógeno
, cada una formada por dos átomos, y que el cloro está compuesto de
moléculas de cloro
, cada una con dos átomos. En este caso, los 100 átomos de hidrógeno existirían en la forma de 50 partículas ampliamente espaciadas (moléculas), y los 100 átomos de cloro en la forma de 50 partículas separadas. Entre los dos gases hay en total 100 partículas ampliamente espaciadas, la mitad de ellas hidrógeno-hidrógeno y la otra mitad cloro-cloro.

Al combinarse, los dos gases se reagrupan para formar hidrógeno-cloro, la combinación atómica que constituye la molécula de cloruro de hidrógeno. Como hay 100 átomos de hidrógeno en total y 100 átomos de cloro, hay 100 moléculas de cloruro del hidrógeno (cada una conteniendo un átomo de cada tipo).

Ahora nos encontramos con que 50 moléculas de hidrógeno más 50 moléculas de cloro se combinan para formar 100 moléculas de cloruro de hidrógeno. Esto es compatible con lo observado en la práctica: 1 volumen de hidrógeno más 1 volumen de cloro dan 2 volúmenes de cloruro de hidrógeno.

El razonamiento anterior da por sentado que las partículas de los diferentes gases —ya estén formadas por átomos simples o por combinaciones de átomos— están en realidad igualmente separadas, como hemos venido repitiendo. En ese caso, números iguales de partículas de un gas (a una temperatura dada) darán siempre volúmenes iguales, independientemente del gas de que se trate.

El primero en apuntar la necesidad de este supuesto —en los gases, igual número de partículas ocupan volúmenes iguales— fue el químico italiano Amadeo Avogadro (1776-1856). La suposición, propuesta en 1811, se conoce por ello como
hipótesis de Avogadro.

Si se tiene en cuenta esta hipótesis, es posible distinguir con claridad entre átomo de hidrógeno y moléculas de hidrógeno (un par de átomos), e igualmente entre los átomos y las moléculas de otros gases. Sin embargo, durante medio siglo después de Avogadro su hipótesis permaneció ignorada, y la distinción entre átomos y moléculas de elementos gaseosos importantes no estaba definida claramente en el pensamiento de muchos químicos, persistiendo asi la incertidumbre acerca de los pesos atómicos de algunos de los elementos más importantes.

Afortunadamente, había otras claves para averiguar los pesos atómicos. En 1818, por ejemplo, un químico francés, Pierre Louis Dulong (1785-1839), y un físico francés, Alexis Thérése Petit (1791-1820), trabajando en colaboración, hallaron una de ellas. Descubrieron que el calor específico de los elementos (el aumento de temperatura que sigue a la absorción de una cantidad fija de calor) parecía variar inversamente con el peso atómico. Es decir, si el elemento
x
tuviera dos veces el peso atómico del elemento
y
, la temperatura del elemento
x
subiría solamente la mitad de grados que la del elemento
y
, después de absorber ambas la misma cantidad de calor. Esta es la
ley del calor atómico.

Así, pues, basta medir el calor específico de un elemento de peso atómico desconocido para obtener inmediatamente una idea, siquiera aproximada, de dicho peso atómico. Este método funcionaba sólo para elementos sólidos, y tampoco para todos, pero era mejor que nada.

Por otra parte, un químico alemán, Eilhardt Mitscherlich (1794-1863), había descubierto hacia 1819 que los compuestos de composición semejante tienden a cristalizar juntos, como si las moléculas de uno se entremezclasen con las moléculas, de configuración semejante, del otro.

De esta
ley del isomorfismo
se dedujo que si dos compuestos cristalizan juntos y se conoce la estructura de uno de ellos, la estructura del segundo puede suponerse similar. Esta propiedad de los cristales isomorfos permitió a los experimentadores corregir errores que pudieran surgir de la consideración de los pesos de combinación solamente, y sirvió como guía para la corrección de los pesos atómicos.

Pesos y símbolos

El punto decisivo llegó con el químico sueco Jons Jakob Berzelius. Fue, después del mismo Dalton, el principal responsable del establecimiento de la teoría atómica. Hacia 1807, Berzelius se lanzó a determinar la constitución elemental exacta de distintos compuestos. Mediante cientos de análisis, proporcionó tantos ejemplos de la ley de las proporciones definidas que el mundo de la química no podría dudar más de su validez y tuvo que aceptar, más o menos gustosamente, la teoría atómica que había nacido directamente de dicha ley.

Berzelius empezó entonces a determinar los pesos atómicos con métodos más avanzados que los que Dalton había sido capaz de emplear. En este proyecto, Berzelius hizo uso de los hallazgos de Dulong y Petit y de Mitscherlich, así como de la ley de los volúmenes de combinación de Gay-Lussac. (No utilizó, sin embargo, la hipótesis de Avogadro.) La primera tabla de pesos atómicos de Berzelius, publicada en 1828, puede confrontarse favorablemente con los valores aceptados hoy día, excepto en dos o tres elementos.

Una diferencia importante entre la tabla de Berzelius y la de Dalton fue que los valores de Berzelius no eran, por lo general, números enteros.

Los valores de Dalton, basados sobre la consideración del peso atómico del hidrógeno como 1, eran todos enteros. Esto condujo al químico inglés William Prout (1785-1850) a sugerir, en 1815, que todos los elementos estaban en definitiva compuestos de hidrógeno (sugerencia que hizo en un principio anónimamente). Según él, los diversos elementos tenían distintos pesos porque estaban compuestos de diferente número de átomos de hidrógeno aglutinados. Esto llegó a llamarse la
hipótesis de Prout.

Other books

Last Grave (9781101593172) by Viguie, Debbie
The Fatal Fashione by Karen Harper
The Horse Changer by Craig Smith
Broken Faith by James Green
Extinction Machine by Jonathan Maberry
Off the Page by Ryan Loveless