“Obviously space exists,” we might answer, “because we live in it. We move through it, drive through it, build in it. Miles, kilometers, cubic feet, linear meters—all are units we use to measure
it.” Humans schedule meetings at places like Broadway and Eighty-second on the second floor of Barnes & Noble in the café. We speak in clear terms of spatial dimensions, often associated with times. It’s the “when, what, where” of daily life.
A theory of time and space as belonging strictly to animal-sense perception, as our source of comprehension and consciousness, is a new and perhaps abstract thing to grasp, and day-to-day experience has indicated nothing of this reality to us. Rather, life has seemingly taught that time and space are external—and perhaps eternal—realities. They appear to encompass and bind all experiences, and are fundamental rather than secondary to life. They seem to lie above and beyond human experience, the gridwork within which all adventures unfold.
As animals, we are organized and wired to use places and time to specify our experiences to ourselves and to others. History defines the past by placing people and events in time and space. Scientific theories such as the Big Bang, the deep time of geology, and evolution are steeped in their logic. Our physical experiences—of moving from point A to point B, of parallel parking, standing on the edge of a precipice—confirm the existence of space.
When we reach for a glass of water on the coffee table, our sense of space is usually impeccable. The glass almost never spills due to a miscalculated reach. To place ourselves as the
creator
of time and space, not as the subject of it, goes against common sense, life experience, and education. It takes a radical shift of perspective for any of us to
intuit
that space and time belong solely to animal-sense perception, because the implications are so startling.
Yet we all instinctively know that space and time are not
things
—the kind of objects that we can see, feel, taste, touch, or smell. There is a peculiar intangibility about them. We cannot pick them up and put them on a shelf, like shells or stones found at the shore. A physicist cannot bring back space or time to the laboratory in a vial, like an entomologist collects insects to be examined and classified. There is something oddly different about them. And that is because space and time are neither physical nor fundamentally real. They
are conceptual, which means that space and time are of a uniquely subjective nature
. They are modes of interpretation and understanding.
They are part of the mental logic of the animal organism, the software that molds sensations into multidimensional objects.
Along with time, space is the other human construct, as if every conceivable object is displayed within a vast container that has no walls. Unfortunately, the actual tangible
perception
of no-space is often confined to experiments that produce “changes of consciousness,” where the subject reports all separate objects to lose their reality as individual, separate items.
For the moment, confined to logic alone, we still should be able to see that the appearance of a myriad of separate objects existing within a matrix of space requires that each item first be learned and identified as separate, and the pattern imprinted on the mind.
When we gaze upon known objects, say a set of dishes and silverware on a table, we cognize each as individual, and separated by empty space—it is a long-standing mental habit to do so. No particular joy or transcendent experience occurs; the forks and spoons are not marvelous in any way. These are items blocked out by the thinking mind, within boundaries of color, shape, or utility. The fork’s tines are seen as specific separate items solely because they have been named. By contrast, the fork’s curved section between handle and tine has no name, and therefore exists as no real separate cognized entity for us.
Consider those rarer occasions when the logical mind is left behind by a wholly new visual experience that catches it off guard, so to speak, such as the riotously changing patterns of the Northern Lights, as seen from one of the great aurora places of the world, central Alaska. Now everyone gapes and gasps with delight. The patterns have no individual names, and at any rate keep mutating. None are perceived as separate entities because they exist outside our normal boxy system of categorization. In cognizing the phenomenon, space, too, vanishes—because an object and its surroundings go together. The entire kaleidoscopic show is a wondrous new entity where space does not play any defining role. Such an all-encompassing perception
is therefore not unknown in the non-psychedelically-drugged world; it merely requires a more direct perception rather than cognition employing habitual conceptions that are decidedly learned and not inherent.
Because human language and ideation decides where the boundaries of one object end and another begins, we’ll occasionally take complex visual phenomena or events with multiple colors and patterns—a sunset, say—and, unable to break it further into parts, brand one’s entire field of vision with a single label. A sparrow or an enlightened person may be swept away by the ineffable grandeur of this ever-mutating crepuscular play of shape and color, while the intellectual will simply brand it with a word—and then perhaps continue with a stream of mind-babble about other sunsets or what poets say about them or whatever. Another example might be the tirelessly changing patterns in a summer cloud or the countless rivulets and clusters of moving drops in a raging waterfall. There’s plenty of space there, but we have not been conditioned to observe a waterfall closely and separate the various watery components, and name or identify the liquidy streams, drops, or other elements and conceive of the space between them, even as they rapidly change. Too much work. So, instead, the entire phenomenon gets a single label of
cloud
or
waterfall
and the normal mental categorization of objects separated by spaces is “given a bye.” As a result, we tend to view it cleanly, staring at what we’re seeing rather than cognizing a flow of mental symbols. The Niagara experience, which would probably be fun no matter what, gains an extra notch of exhilaration simply because our habitual mental cages are now temporarily built of less dense material. Helping things along in this case is the sound track of undifferentiated “roar,” which doesn’t lend itself to a lot of ideation, either.
“Name the colors, blind the eye” is an old Zen saying, illustrating that the intellect’s habitual ways of branding and labeling creates a terrible experiential loss by displacing the vibrant, living reality with a steady stream of labels. It is the same way with space, which is solely the conceptual mind’s way of clearing its throat, of pausing between identified symbols.
At any rate, the subjective truth of this is now supported by actual experiments (as we saw in the quantum theory chapters) that strongly suggest distance (space) has no reality whatsoever for entangled particles, no matter how great their apparent separation.
The Eternal Seas of Space and Time?
Einstein’s relativity, too, has shown that space is not a constant, not absolute, and therefore not inherently substantive. By this, we mean that extremely high speed travel makes intervening space essentially shrink to nothingness. Thus, when we step out under the stars, we may marvel at how far away they are, and at how vast are the spaces within the universe, but it has been shown repeatedly, for a full century now, that this seeming separation between ourselves and anything else is subject to point of view and therefore has no
inherent
bedrock reality. This doesn’t by itself totally negate space but merely makes it tentative. If we lived on a world with a very strong gravitational field or traveled outbound at a high speed, those stars would lie at an entirely different distance. To use real figures, if we headed toward the star Sirius at 99 percent of light’s speed of 186,282.4 miles per second, we would find that it was barely more than one light-year away, and not the 8.6 light-years our friends back on Earth measure it to be. If we crossed a living room twenty-one feet in length going at that speed, every instrument and perception would show that it was actually now three feet in length. Here’s the amazing thing: the living room, and the intervening space from Earth to Sirius, is now not artificially shrunk by some illusion. The star
is
that far away. The living room
is
only three feet across. And if we could move at 99.9999999 percent of lightspeed, which is perfectly allowable by the laws of physics, the living room would now be 1/22,361th its original size or just a hundredth of an inch across—barely larger than the period at the end of this sentence. All items, furniture, or people in the room would be likewise Lilliputian, and yet we’d notice nothing amiss. Space would have changed to nearly nothing. Where, then, is that supposedly
trustworthy gridwork within which we place our habitually established “things”?
Actually, the first clues that space may be more curious and iffy than anyone had imagined came in the nineteenth century, when physicists assumed, just as most still do, that space and time have an external, independent existence that is independent of consciousness.
This takes us to the man most associated with the contemplation of space. As we’ll see, the genius of Einstein has a dimension that goes beyond his relativity theories of 1905 and 1915. For the extraordinary timing of history placed him, at the start of his career, at a time when the foundations of Western natural philosophy were on the verge of crisis and confusion. Quantum theory was still years off in the future, and there was a surprising lack of understanding of the interaction between the observer and the phenomenon observed.
The generation to which Einstein belonged had been taught that there existed an objective physical world that unfolded itself according to laws independent of life. “The belief in an external world independent of the perceiving subject,” Einstein later wrote, “is the basis of all natural science.” The universe was viewed as a great machine set in motion at the beginning of time, with wheels and cogs that turned according to immutable laws independent of us. “Everything is determined, the beginning as well as the end, by forces over which we have no control. It is determined for the insect as well as for the star. Human beings, vegetables, or cosmic dust, we all dance to a mysterious tune, intoned in the distance by an invisible piper.”
Of course, this notion is not, as science has subsequently discovered, in agreement with the experimental findings of quantum theory. Reality—according to the most stringent interpretation of the scientific data—is created by or at least correlative with the observer. It is in this light that natural philosophy needs now to be reinterpreted, with science placing a new emphasis on those special properties of life that make it fundamental to material reality. Yet even back then in the eighteenth century, Immanuel Kant, ahead of
his time, said that “we must rid ourselves of the notion that space and time are actual qualities in things in themselves . . . all bodies, together with the space in which they are, must be considered nothing but mere representations in us, and exist nowhere but in our thoughts.”
Biocentrism, of course, shows that space is a projection from inside our minds, where experience begins. It is a tool of life, the form of outer sense that allows an organism to coordinate sensory information, and to make judgments regarding the quality and intensity of what is being perceived. Space is not a physical phenomenon per se—and should not be studied in the same way as chemicals and moving particles. We animal organisms use this form of perception to organize our sensations into outer experience. In biological terms, the interpretation of sensory input in the brain depends on the neural pathway it takes from the body. For instance, all information arriving on the optic nerve is interpreted as light, whereas the localization of a sensation to a particular part of the body depends on the particular pathway it takes to the central nervous system.
“Space,” said Einstein, refusing to let metaphysical thinking interfere with his equations, “is what we measure with a measuring rod.” But, once again, this definition should emphasize the
we
. For what is space if not for the observer? Space is not merely a container without walls. It is pertinent to ask what would be left if all objects and life were removed. Where would space be then? What would define its borders? It is inconceivable to think of anything existing in the physical world without any substance or end. It is metaphysical vacuity for science to ascribe independent reality to truly empty space.
Yet another way of appreciating the vacuity of space (yes, that’s a joke) is the modern finding that seeming emptiness seethes with almost unimaginable energy, which manifests as virtual particles of physical matter, jumping in and out of reality like trained fleas. The seemingly empty matrix upon which the storybook of reality is set is actually a living, animated “field,” a powerful entity that is anything but empty. Sometimes called Z-point energy, it starts to show itself when the all-pervasive kinetic energies around us have quieted
to a stop at the temperature of absolute zero, at -459.67°F. Z-point or vacuum energy has been experimentally confirmed since 1949 via the Casimir effect, which causes closely spaced metal plates to become powerfully pressed together by the waves of vacuum energy outside them. (The tiny space between the plates stifles the energy waves by leaving them insufficient “breathing room” to push back against the force.)
So we have multiple illusions and processes that routinely impart a false view of space. Shall we count the ways? (1) Empty space is not empty. (2) Distances between objects can and do mutate depending on a multitude of conditions, so that no bedrock distance exists anywhere, between anything and anything else. (3) Quantum theory casts serious doubt about whether even distant individual items are truly separated at all. (4) We “see” separations between objects only because we have been conditioned and trained, through language and convention, to draw boundaries.